| 研究生: |
張財旺 Chang, Tsai-Wang |
|---|---|
| 論文名稱: |
核醣蛋白P0及結合蛋白DIP1(Cyclin D1結合蛋白)在乳癌中致癌或抑癌之研究 Study of Tumorigenesis or Tumor Suppression of Ribosomal Protein P0 and Its Associated Protein DIP1 (D-type Cyclin-interacting Protein 1) in Breast Cancer |
| 指導教授: |
張敏政
Chang, Ming-Chung |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
醫學院 - 基礎醫學研究所 Institute of Basic Medical Sciences |
| 論文出版年: | 2006 |
| 畢業學年度: | 94 |
| 語文別: | 中文 |
| 論文頁數: | 103 |
| 中文關鍵詞: | 核醣酸性蛋白 |
| 外文關鍵詞: | protein GCIP, P0 protein, 60S ribosomes |
| 相關次數: | 點閱:62 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
中文摘要
核醣蛋白P0為核糖體stalk結構中重要一員,核醣體stalk位於真核生物中60S subunit 上在蛋白質合成中扮演一個重要的角色,會影響生物存活與否。利用Yeast-two-hybrid以P0為餌找出與P0作用的蛋白-GCIP,另一方面同時以Mammalian-two-hybrid、共同免疫沈澱法及GST pull down等方法證實並找出P0及GCIP這2個蛋白質作用的區域,P0與GCIP作用區域是在N端,而GCIP則位於N-或C-端區域;另外利用蔗糖梯度離心法證實P0及GCIP蛋白與polysome及ribosome出現在不同的蔗糖梯度中暗示這2個蛋白是以free form狀態結合。
先前已有作者在COS7細胞中發現GCIP會部分抑制Rb磷酸化,在我們的實驗中將GCIP送入MCF7細胞也有相同結果,而將P0及GCIP同時送入時此現象會被反轉;另一方面我們也在MCF7和HepG2細胞中建立起P0持續表現細胞株,我們發現會加快細胞生長速率以及強化了在Soft agar中形成colony能力,同時檢測Cyclin D1及Rb-S780蛋白質的量的確都是增加,最後利用RT-PCR檢測12組正常乳房組織/乳癌組織中P0 mRNA量,發現P0在乳癌組織中會過度表現,而Stalk的另一個組成成分P1則沒有。
另一方面我們也比較了aggressive/non-aggressive細胞MDA-MB-231、MDA-MB-435S/ZR75-1、MCF7這些細胞株中GCIP的表現發現在MDA-MB-231、MDA-MB-435S中GCIP蛋白遠比ZR75-1、MCF7低很多,所以我們假設GCIP會抑制細胞生長速率,所以我們利用siRNA技術在MCF7細胞中降低GCIP表現量會加快細胞生長速率,而在MDA-MB-231、MDA-MB-435S增加GCIP表現量實驗結果顯示不論是暫時將GCIP送入MDA-MB-435S或是在MDA-MB-231建立起GCIP持續表現細胞株中的確都會減緩細胞生長速率,而這2株細胞株爬行能力、入侵能力及Soft agar中形成colony能力都降低,因此我們相信GCIP在乳癌中扮演tumor suppressor protein角色。
ABSTRACT
The ribosomal acidic P0 protein, an essential component of eukaryotic ribosomal stalk, was found to interact with a newly identified helix-loop-helix (HLH) protein GCIP. In vivo and in vitro interaction assays using yeast two-hybrid, mammalian two-hybrid, glutathione S-transferase pull-down, and coimmunoprecipitation methods prove that P0 can interact with both the N- and C-terminus of GCIP via its N-terminal 45-90 amino acid residues. Although the P0-GCIP complex was detected mainly in cytoplasmic fraction, a polysome profile analysis indicated that the P0-GCIP complex was not coeluted with either polysomes or 60S ribosomes, indicating endogenous GCIP protein associated with free form of P0. In consistent with previous study that showed transient overexpression of GCIP in COS-7 cells partially reduced the phosphorylation of Rb protein, the reporter experiments in this study also revealed that transfected GCIP into MCF-7 cells resulted in the level of phosphorylation of Rb was reduced. Additional cotransfection of P0 with GCIP, however, resulted in GCIP-mediated reduction of Rb phosphorylation level was repressed by P0 in a dose-dependent manner. Furthermore, we also established the stable overexpression of P0 in breast and hepatocellular cancer cells. Both the MCF-7 and HepG2 cells stably expressing P0 demonstrate several phenotypes of transformation; namely, enhanced rate of proliferation and improved efficiency in forming colonies in soft agar. An enhancement of expressed cyclin D1 and an increased phosphorylation of pRb at Ser780 was also observed in the P0 overexpressing cell lines. Additionally, using a competitive RT (reverse transcriptase)-PCR analysis of mRNA on 12 pairs of cancer/noncancer tissues P0 expression was found to be significantly higher in breast cancer tissue than in noncancer tissue. Taken together, these data indicate that overexpression of P0 can cause oncogenesis in breast and liver tissues through inhibiting the tumor suppression of GCIP, suggesting P0 is a oncogenic molecule in breast and liver tissues.
We have investigated the role and mechanism of GCIP in breast tumorigenesis. Westerning blot analysis revealed that markedly decreased GCIP levels in aggressive and invasive breast cancer cells MDA-MB435S and MDA-MB231, as compared to nonaggressive/differentiated breast cancer cells ZR75-1 and MCF-7. Expression of GCIP protein in MDA-MB435S cells and in MDA-MB231 cells resulted in a significant reduction of the cell proliferation on plastic surface, decreased anchorage-independent growth in soft agar and the migration capacity in Boyden chambers as well as reduced the invasion capability in matrix gel assay. Using the MDA-MB231 cells, we also generated stable cell clones constitutively expressing GCIP, and their mock-transfected counterparts. In consistent with transient transfection experiments, stable overexpression of GCIP resulted in dramatically decreased anchorage-independent growth, the migration capacity and the invasion capability, indicating that GCIP expression level was negatively associated with cell proliferation, cell migration and invasiveness. In addition, RT-PCR and gelatin zymography identified reduced MMP-2 and MMP-9 secretion by GCIP-overexpressing melanoma cells as compared with their control counterparts. We also found that GCIP function as a transcriptional suppressor of cyclin D1 and the phosphorylation levels of ERK1/2, P38 and JNK of MAPK (Mitogen-Activated Protein Kinase) pathway were much lower in GCIP-overexpressing melanoma cells as compared with their control counterparts. Together, these studies demonstrate that GCIP is a newly identified tumor suppressor of breast cancer cells and contributes to inhibit tumor cell aggressiveness through inhibition of MAPK pathway.
參考文獻
1.Agami, R. and Bernards, R. Distinct initiation and maintenance mechanisms cooperate to induce G1 cell cycle arrest in response to DNA damage. Cell 102(1): 55-66. (2000).
2.Asada, H. Ishii, N. Sasaki, Y. Endo, K. Kasai, H. Tanaka, N. Takeshita, T. Tsuchiya, S. Konno, T. and Sugamura, K. Grf40, A novel Grb2 family member, is involved in T cell signaling through interaction with SLP-76 and LAT. J.Exp.Med. 189:1383-1390. (1999).
3.Ballesta, J.P. Rodriguez-Gabriel, M.A. Bou, G. Briones, E. Zambrano, R. and Remacha, M. Phosphorylation of the yeast ribosomal stalk Functional effects and enzymes involved in the process. FEMS Microbiol. Rev. 23 :537–550. (1999).
4.Barnard, G.F. Staniunas, R.J. Bao, S. Mafune, K. Steele, G.D. Jr Gollan, J.L. Chen, L.B. Increased expression of human ribosomal phosphoprotein P0 messenger RNA in hepatocellular carcinoma and colon carcinoma. Cancer Res. 52:3067-3072. (1992).
5.Bartkova, J. Lukas, J. Muller, H. Lutzhoft, D. Strauss, M. and Bartek, J. Cyclin D1 protein expression and function in human breast cancer. Int. J. Cancer 57:353-61. (1994).
6.Baselga, J. and Norton, L. Focus on breast cancer. Cancer Cell 1:319-322. (2002).
7.Berger, C. Pierce, L.N. Kruger, M. Marcussson, E.G. Robbins, J.M. Welcsh, P. Welch, P.J. Welte, K. King, M.C. Barber, J.R. and Wong-Staal, F. Identification of Id4 as a regulator of BRCA1 expression by using ribozyme-library-based inverse geomics approach. Proc. Natl. Acad. Sci. 98:130-135. (2001).
8.Benezra, R. Davis, R.L. Lockshon, D. Turner, D.L. and Weintraub, H. The protein Id: a negative regulator of helix-loop-helix DNA binding proteins. Cell 61(1): 49-59. (1990).
9.Berry, D.M. Benn, S.J. Cheng, A.M. and McGlade, C.J. Caspase-dependent cleavage of the hematopoietic specific adaptor protein Gads alters signalling from the T cell receptor. Oncogene 20(10): 1203-11. (2001).
10.Bertram, J. Palfner, K. Hiddemann, W. and Kneba, M. Overexpression of ribosomal proteins L4 and L5 and the putative alternative elongation factor PTI-1 in the doxorubicin resistant human colon cancer cell line LoVoDxR. Eur. J. Cancer 34:731-736. (1998).
11.Bhat, K.P. Itahana, K. A.J. and Zhang, Y. Essential role of ribosomal protein L11 in mediated growth inhibition-induced p53 activation. EMBO.J. 23:2402-12. (2004).
12.Bjornsti, M.A. and Houghton, P.J. Lost in translation:dysregulation of cap-dependent translation and cancer. Cancer Cell 5:519-23. (2004).
13.Bourette, R.P. Arnaud, S. Myles, G.M. Blanchet, J.P. Rohrschneider, L.R.and Mouchiroud, G.. Mona, a novel hematopoietic-specific adaptor interacting with the macrophage colony-stimulatingfactor receptor, is implicated in monocyte/macrophage development. EMBO J. 17, 7273-7281. (1998).
14.Chang, M.S. Chang, C.L. Huang, C.J. and Yang, Y.C. p29, a novel GCIP-interacting protein, localizes in the nucleus. Biochem Biophys Res Commun 279(2): 732-7. (2000).
15.Chang, B.D. Swift, M.E. Shen, M. Fang, J. Broude, E.V. and Roninson, I.B. Molecular determinants of terminal growth arrest induced in tumor cells by a chemotherapeutic agent. Proc. Natl. Acad. Sci. USA 99:389–394. (2002).
16.Cheng, S.H. Tsou, M.H. Liu, M.C. Jian, J.M. Cheng, J.C. Leu, S.Y. Huang, A.T. Unique Features of Breast Cancer in Taiwan. Breast Cancer Res. Treat.63 (3):213-223. (2000).
17.Elkon, K. Weissbach, H. et al. Central nervous system function in systemic lupus erythematosus. Neurochem Res. 15(4): 401-6. (1990).
18.Engebraaten, O. and Fodstad, O. Site-specific experimental metastasis patterns of two human breast cancer cell lines in nude rats. Int J Cancer 82: 219-25. (1999).
19.Fong, S. et al. Id-1 as a molecular target in therapy for breast cancer cell invasion and metastasis. Proc Natl Acad Sci U S A 100:13543-8. (2003).
20.Fujii, S. Tominaga, O. Nagawa, H. Tsuno, N. Nita, M.E. Tsuruo, T. and Muto, T. Quantitative analysis of the cyclin expression in human esophageal cancer cell lines. J. Exp. Clin. Cancer Res. 17:491-6. (1998).
21.Geffroy, N. Guedin, A. Dacquet, C. and Lefebvre, P. Cell cycle regulation of breast cancer cells through estrogen-induced activities of ERK and Akt protein 90 kinases. Mol. Cell Endocrinol 237:11-23. (2005).
22.Gillett,C. Smith, P. Gregory, W. Richards, M. Millis, R. Peters, G. and Barnes, D. Cyclin D1 and prognosis in human breast cancer. Int. J. Cancer 69(2):92-9. (1996).
23.Gonzalo,P. Laverge, J.P. and Reboud, J.P. Pivotal role of the P1 N-terminal domain in the assembly of the mammalian ribosomal stalk and in the protessynthetic activity .J.Biol.Chem. 276:19762-19769. (2001).
24.Hay, N. and Sonenberg, N. Upstream and downstream of mTOR. Gene and Dev. 18:1926-45. (2004).
25.Ikeda, M. Saito, T. Endo, T. Tsurugi, K. and Onaya, T. Thyrotropin stimulates the expression of an acidic ribosomal protein, P0, messenger ribonucleic acid in cultured rat thyroid (FRTL) cells. Endocrinology 128(5): 2540-7. (1991).
26.Ioannidis,P. Mahaira, L. Papadopoulou, A. Teiexeira, M.R. Heim, S. Andersen, J.A. Evangelou, E. Danfi, U. Pandis, N. and Traggas, T. 8q24p copy number gains and expression of the c-myc mRNA stabilizing protein CRD-BP in the primary breast carcinomas. Int.J.Cancer 104:54-59. (2003).
27.Jiang,W. Kahn, S.M. Zhou, P. Zhang, Y.J. Cacace, A.M. Infante, A.S. Doi, S. Santella, R.M. and Weinstein, I.B. Overexpression of cyclin D1 in rat fibroblasts causes abnormalities in growth control, cell cycle progression and gene expression. Oncogene 12:3447-57. (1993).
28.Khanna,N. Sen, S. Sharma, H. and Singh, N. S29 ribosomal protein induces apoptosis in H520 cells and sensitizes them to chemotherapy. Biochem.Biophys.Res.Comm. 304:26-35. (2003).
29.Kondoh, N. Wakatsuki, T. Ryo, A. Hada, A. Aihara, T. Horiuchi, S. Goseki, N. Matsubara, O. Takenaka, K. Shichita, M. Tanaka, K. Shuda, M. and Yamamoto, M. Identification and characterization of genes associated with human hepatocellular carcinogenesis. Cancer Res. 59(19): 4990-6. (1999).
30.Landis, M.W. Pawlyk, B.S. Li, T. Sicinski, P. and Hinds, P.W. Cyclin D1-dependent kinase activity in murine development and mammary tumorigenesis. Can.Cell 9:13-22. (2006).
31.Law,C.L. Ewings, M.K. Chaudhary, P.M. Solow, S.A. Yun, T.J. Marshall, A.J. Hood, L. and Clark, E.A. GrpL, a Grb2-related adaptor protein, interacts with SLP-76 to regulate nuclear factor of activated T cell activation. J.Exp. Med. 189: 1243-1253. (1999).
32.Leone, F. et al. Detection of breast cancer cell contamination in leukapheresis product by real-time quantitative polymerase chain reaction. Bone Marrow Transplant 27:517-23. (2001).
33.Lin, C. Q. Singh, J. Murata, K. Itahana, Y. Parrinella, A. Liang, A.H. Gillett, C.E. Campisi, J. and Desprez, P.Y. A role for Id1 in the aggressive phenotype and steroid hormone response of human breast cancer cells. Cancer Res. 60:1332-1340. (2000).
34.Liu,S.K.W. and McGlade, C.J. Gads is a novel SH2 and SH3 domain-containing adaptor protein that binds to tyrosine-phosphorylated Shc. Oncogene 17:3073-3082. (1998).
35.Liu,S.K.W. Berry, D.M. and McGlade, C.J. The role of Gads in hematopoietic cell signaling. Oncogene 20:6284-6290. (2001).
36.Lopez, C.D. Martinovsky, G. and Naumovski, L. Inhibition of cell death by ribosomal protein L35a.Cancer Lett.180:195-202. (2002).
37.Luzzi, V. Holtschlag, V. and Watson, M.A. Expression profiling of ductal carcinoma in situ by laser capture microdissection and high-density oligonucleotide arrays. Am.J. Pathol. 158:2005–2010. (2001).
38.Ma, W. Xia, C. Lin, P. Qiu, M. Luo, Y. Tan, T.H. and Liu, M. Leukocyte-specific adaptor protein Grap2 interacts with hematopoietic progenitor kinase 1 (HPK1) to activate JNK signaling pathway in T lymphocytes. Oncogene 20 : 1703-14. (2001).
39.Ma,W. Xia, X. Stafford, L.J. Yu, C. Wang, F. LeSage, G. and Liu, M. Expression of GCIP in the transgenic mice decrease susceptibility to chemical hepatocarcenogenesis. Oncogen 25:4207-4216. (2006).
40.Maekawa, T. Kosuge, S. Karino, A. Okano, T. Iuo, J. Munakata, H. and Ohtsuki, K. Biochemical characterization of 60S acidic ribosomal P proteins from porcine liver and the inhibition of their immunocomplex formation with sera from systemic lupus erythematosus (SLE) patients by glycyrrhizin in vitro. Biol. Pharm. Bull. 23(1): 27-32. (2000).
41.Mahler,M. Kessenbrock, K. Raats, J. Williams, R. Fritzler, M.J. and Bluthner, M. Characterization of the human autoimmune response to the major C-terminal epitope of the ribosomal P proteins. J.Mol.Med. 81:194-204. (2003).
42.Matsushime, H. Quelle, D. E. Shurtleff, S. A. Shibuya, M. Sherr, C. J.and Kato, J.Y. D-type cyclin-dependent kinase activity in mammalian cells. Mol. Cell Biol. 14(3): 2066-76. (1994).
43.McIntosh,G.G. Anderson, J.J Milton, I. Steward, M. Parr, A.H. Thomas, M.D. Henry, J.A. Angus, B. Lennard, T.W. and Horne, C.H. Determination of the prognostic value of cyclin D1 overexpression in breast cancer. Oncogene. 11(5):885-91. (1995).
44.Milde-Langosch, K. Bamberger, A.M. Methner, C. Rieck, G. and Loning, T. Expression of cell cycle-regulatory proteins rb, p16/MTS1, p27/KIP1, p21/WAF1, cyclin D1 and cyclin E in breast cancer: correlations with expression of activating protein-1 family members. Int. J. Cancer 87:468-72 . (2000).
45.Mills, A.A. p53, link to the past, bridge to the future. Gene Dev. 19:2091-9. (2005).
46.Mittnacht, S. The retinoblastoma proteinpfrom bench to bedise. Eur.J.Cell.Biol. 84:97-107. (2005).
47.Nacht, M. Ferguson, A.T. Zhang, W. Petroziello, J.M. Cook, B.P. Gao, Y.H. Maguire, S. Riley, D. Coppola, G. Landes, G.M. Madden, S.L.and Sukuman, S. Combining serial analysis of gene expression and array technologies to identify gene differentially expressed in breast cancer. Cancer Res. 59:5464-5470. (1999).
48.Nathanson, K.L. Wooster, R. and Weber, B.L. Breast cancer genetics: What we know and what we need. Nat. Med. 7, 552–556. (2001).
49.Nishida, J. Shiratsuchi, A. Nadano, D. Sato, T.A. and Nakanishi, Y. Structural change of ribosomes during apoptosis: degradation and externalization of ribosomal proteins in doxorubicin-treated Jurkat cells. J Biochem 131:485-493. (2002).
50.Norton, J.D. Id helix-loop-helix proteins in cell growth, differentiation and tumorigenesis .J.Cell Sci.113:3897-3905. (2000).
51.Perk, J. Iavarone, A. and Benezra, R. Id family of Helix-Loop-Helix protein in cancer. Can. Cell 5:603-14. (2005).
52.Pogue-Geile, K. Geiser, J. R. et al. Ribosomal protein genes are overexpressed in colorectal cancer: isolation of a cDNA clone encoding the human S3 ribosomal protein. Mol. Cell Biol. 11(8): 3842-9. (1991).
53.Qiu, M. Hua, S. Agrawal, M. Li, G. Cai, J. Chan, E. Zhou, H. Luo, Y. and Liu, M. Molecular cloning and expression of human grap-2, a novel leukocyte- specific SH2- and SH3-containing adaptor-like protein that binds to gab- 1. Biochem. Biophys. Res. Commun 253(2): 443-7. (1998).
54.Remacha, M. Jimenez-Diaz, A. Santos, C. Briones, E. Zambrano, R. M. A. R. Gabriel, E. P.Guarinos, J. and Ballesta, G. Proteins P1, P2, and P0, components of the eukaryotic ribosome stalk. New structural and functional aspects. Biochem Cell Biol. 73(11-12): 959-68. (1995).
55.Revenkova, E. Masson, J. et al. Involvement of Arabidopsis thaliana ribosomal protein S27 in mRNA degradation triggered by genotoxic stress." EMBO.J. 18(2): 490-9. (1999).
56.Rosenwald, I.B. The role of translation in neoplastic transformation from a pathologist's point of view. Oncogen 23:3230-47. (2004).
57.Ruggero, D. and Pandolfi, P.P. Does Ribosome translate cancer? Nat.Rev.Can. 3:179-192. (2003).
58.Simone, G. et al. nm23 expression in human breast cancer: correlation with cell proliferation (S-phase) as observed with a double-labeling immunocytochemical-autoradiographic technique. Int. J. Oncol. 12:1055-9 . (1998).
59.Sherr, C. J. Mammalian G1 cyclins. Cell 73(6): 1059-65. (1993).
60.Sicinski, P. Donaher, J. L. Parker, S. B. Li, T. Fazeli, A. Gardner, H. Haslam, S. Z. Bronson, R. T. Elledge, S. J. Weinberg, R. A. Cyclin D1 provides a link between development and oncogenesis in the retina and breast. Cell 82: 621-630. (1995).
61.Terai,S. Aoki, H. Ashida, K. and Thorgeirsson, S.S. Human homologue of maid: A dominant inhibitory helix-loop-helix protein associated with liver-specific gene expression. Hepatology 32(2): 357-66. (2000).
62.Sun, K.H. Tang, S.J. Lin, M.L. Wang, Y.S. Sun, G.H. and Liu W.T. Monoclonal antibodies against human ribosomal P proteins penetrate into living cells and cause apoptosis of Jurkat T cells in culture. Rheumatology 40:750-756. (2001).
63.Tchórzewski, M. The acidic ribosomal P proteins. Int. J. Biochem. Cell Biol. 34:911-915. (2002).
64.Tchórzewski, M. Boldyreff, B. Issinger, O.G. and Grankowski, N. Analysis of the protein–protein interactions between the human acidic ribosomal P proteins: evaluation by the two hybrid system. Int. J. Biochem. Cell Biol. 32 :737–746. (2000).
65.Tchórzewski, M. Krokowski, D. Rzeski, W. Issinger, O.G. and Grankowski, N. The subcellular distribution of the human ribosomal stalk components: P1,P2 and P0 proteins. Int. J. Biochem. Cell Biol. 35:203-211. (2003).
66.Tsolos,G.C. Nambiar, M.P. Tenbrock, K. and Juang, Y.T. Rewiring the T-cell: signaling defects and novel prospects for the treatment of SLE. Trend.Immunol. 24:259-263. (2003).
67.Uchiumi, T. Hori, K. et al. Replacement of L7/L12.L10 protein complex in Escherichia coli ribosomes with the eukaryotic counterpart changes the specificity of elongation factor binding. J. Biol. Chem. 274(39): 27578-82. (1999).
68.Uchiumi, T. and Kominami, R. Direct evidence for interaction of the conserved GTPase domain within 28 S RNA with mammalian ribosomal acidic phosphoproteins and L12. J. Biol. Chem. 267(27): 19179-85. (1992).
69.Verbeek, B.S. Adriaansen-Slot, S.S. Vroom, T.M. Beckers, T. and Rijksen, G. Overexpression of EGFR and c-erbB2 causes enhanced cell migration in human breast cancer cells and NIH3T3 fibroblasts. FEBS Lett 425:145-50 . (1998).
70.Weinberg, R. A. The retinoblastoma protein and cell cycle control. Cell 81(3): 323-30. (1995).
71.Xia, C. Bao, Z. Tabassam, F. Tabassam, F. Ma, W. Qiu, M. Hua, S. and Liu, M. GCIP, a novel human grap2 and cyclin D interacting protein, regulates E2F-mediated transcriptional activity. J. Biol. Chem. 275(27): 20942-8. (2000).
72.Xiang, H. Wang, J. Mao, Y. Liu, M. Reddy, V.N. and Li, D.W. Human telomerase accelerates growth of lens epithelial cells through regulation of the genes mediating RB/E2F pathway. Oncogene. 21:3784-91. (2002).
73.Xiong, Y. Futcher, B. and Beach, D. Human D-type cyclin. Cell 65:691-699. (1991).
74.Yao,Y. Doki, Y. Jiang, W. Imoto, M. Venkatraj, V.S. Warburton, D. Santella, R.M. Lu, B. Sun, X.H. and Su, T. Cloning and characterization of DIP1, a novel protein that is related to the Id family of proteins. Exp.Cell Res. 257:22-32. (2000).
75.Yu,Q. Geng, Y. and Sicinski, P. Specific protection against breast cancers by cyclin D1 ablation. Nature 411: 1017-1021. (2001).
76.Yu,Q. Sicinski, E. Geng, Y. Ahnstorm, M. Zagozdzon, A. Kong, Y. Gardner, H. Kiyokawa, H. Harris, L.N. Stai, O. and Sicinski, P. Requirement for CDK4 kinase function in breast cancer. Can.Cell 9:23-32. (2006).
77.Zafonte, B.T. et al. Cell-cycle dysregulation in breast cancer: breast cancer therapies targeting the cell cycle. Front Biosci 5, D938-61. (2000).
78.Zhang, W. Sloan-Lancaster, J. Kitchen J., Trible, R. P. and Samelson, L. E. LAT: the ZAP-70 tyrosine kinase substrate that links T cell receptor to cellular activation. Cell 92(1): 83-92. (1998).
79.Zhang,Y. Wolf, G.W. Bhat, K. Jin, A. Allio, T. Burkhart, W.A. and Xiong, Y. Ribosomal protein L11 negatively regulates oncoprotein MDM2 and mediates a p53-dependent ribosomal-stress checkpoint pathway. Mol.Cell.Biol.23:8902-8912. (2003).
80.Zhong, Q. Chen, C.F. Chen, Y. Chen, P.L. and Lee, W.H. Identification of cellular TSG101 protein in multiple human breast cancer cell lines. Cancer Res. 57:4225-8. (1997).
81.Zwijsen, R.M. et al. Cyclin D1 triggers autonomous growth of breast cancer cells by governing cell cycle exit. Mol.Cell.Biol.16: 2554-60. (1996).