| 研究生: |
洪志宏 Hong, Jhih-Hong |
|---|---|
| 論文名稱: |
具溝槽式電極與氮化鎵/氮化銦鎵多重量子井結構之藍綠光金半金光檢測器之研究 The Study of Blue-Green Light GaN/InGaN MQWs MSM Photodetectors with Recessed Electrodes |
| 指導教授: |
蘇炎坤
Su, Yan-Kuin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 英文 |
| 論文頁數: | 97 |
| 中文關鍵詞: | 溝槽式電極 、多重量子井 、金半金光檢測器 、藍綠光 |
| 外文關鍵詞: | recessed electrodes, MQW, MSM photodetectors, blue-green light |
| 相關次數: | 點閱:80 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在本論文中,我們利用有機化學氣相沉積系統成長出氮化鎵/氮化銦鎵多重量子井與氮化鎵塊材的三五族氮化物材料,並利用溝槽式電極的方式製造金半金光檢測器。為了得到高品質的磊晶材料以及延伸檢測波長至較長波長以供不同檢測需求,我們在一開始探討不同的主動層結構對於元件特性之影響,然後討論成長氮化鎵/氮化銦鎵多重量子井的參數,例如多重量子井之銦含量以及量子井對數,最後我們討論不同金屬對於元件特性之影響。並且我們利用一些分析設備來對我們所成長出來的磊晶品質上的分析,而分析的設備包含高解析度X光繞射儀、原子力顯微鏡、掃描式電子顯微鏡以及變溫光激發光分析。具有這種氮化鎵/氮化銦鎵多重量子井金半金光檢測器最後被製造,然後我們將對這些元件做特性上的分析。
這篇論文主要由兩大部分組成的。在第一部分,我們主要是在討論氮化鎵/氮化銦鎵多重量子井主動層結構以及電極結構對於元件特性之影響,並且和一般的氮化鎵塊材上製作出的氮化鎵的金半金光檢測器的特性來做比較,我們發現具有溝槽式電極之元件其在光電特性都有較好的表現,同時發現當使用氮化鎵/氮化銦鎵多重量子井做為元件主動層結構時,由於其結構之高載子遷移率的二維電子氣與溝槽式電極的均勻電場,使得其元件特性明顯優於具溝槽式電極之氮化鎵金半金光檢測器。在三伏特的偏壓下,我們可以發現具有溝槽式電極與氮化鎵/氮化銦鎵多重量子井結構之金半金光檢測器的暗電流、光暗電流比與響應率分別為2.8×10-12 A、5.7×106以及0.72 AW-1,比使用一般的氮化鎵金半金光檢測器所做出來的還要好。
在第二部分,我們主要是在討論改變氮化鎵/氮化銦鎵多重量子井其銦含量與量子井對數對於藍綠光吸收效率之改善與電極金屬對於元件特性之影響。我們嘗試出來當銦含量為35%且量子井對數為13對時,其具有較好的藍綠光吸收效率。我們以高解析度 X 光繞射儀以及變溫光激發光分析此結構具有較低的銦聚集效應與較低的活化能,且其具有較高的主動層磊晶品質與蕭特基能障。同時本論文中也討論不同金屬對於元件特性之影響,在此部分我們發現金屬之導電性與功函數將會影響元件之光電特性與蕭特基能障,其有抑制漏電流的效果,因此使得其元件的特性上得到改善。在三伏特的偏壓且入射光波長為480 nm時,我們可以發現具有溝槽式鉑電極與氮化鎵/氮化銦鎵多重量子井結構之金半金光檢測器的蕭特基能障、暗電流與光暗電流比分別為1.02 eV、2.79×10-13 A以及6.8×103。
In this thesis, the nitride-based GaN/InGaN mulit-quantum-wells (MQWs) and GaN bulk active layer had been grown by metal organic chemical vapor deposition system (MOCVD) and processed with recessed electrodes for metal-semiconductor-metal (MSM) photodetectors (PDs). In order to realize high quality epitaxial layer and extend the absorption region to blue-green region for various applications, the active layer structures, such as GaN/InGaN MQWs and GaN bulk, had been discussed. And then the growth conditions, such as In composition and periods of QWs had been optimized. The effects of various electrodes’ metals on the performance of PDs were also discussed in this thesis. Several analysis techniques, such as X-ray diffraction (XRD), atomic force microscopy (AFM), scanning electron microscopy (SEM) and temperature-dependent photoluminescence (TDPL), had also been performed to characterize the crystal quality of these epitaxial layers. The MSM PDs with GaN/InGaN MQWs active layer and recessed electrodes were then fabricated and characterized.
This thesis is made up of two parts. In the first part, we focused on the GaN/InGaN MQWs active layer and electrode structures. Comparing with the GaN bulk PDs, it was found that the opto-electrical characteristics of the devices with recessed electrodes were better than those without. It was also found that the characteristics of the devices with GaN/InGaN MQWs active layer structure were better, because of the high mobility of two-dimensional electron gas (2DEG) at the hetero-junction and the uniform electric field resulted from the geometry of electrodes in the active layer. At 3 V, the dark current, photo to dark current ratio and the responsivity were 2.8×10-12 A, 5.7×106 and 0.72 AW-1, respectively.
In the second part, we focused on the In compositions and periods of QWs in the GaN/InGN MQWs for blue-green region absorption and the effects of various electrodes’ metals. It was found that the optimized In composition and the period are 35% and 13, respectively. According to HRXRD and TDPL, this optimized structure had smaller In localization effect, smaller activation energy, better quality and higher Schottky barrier height. At the last of this thesis, different electrodes’ metals for the MSM MQW PDs had been discussed. In this part, it was found that the conductivities and the work functions of the electrodes’ metals would affect the opto-electrical characteristics and Schottky barrier height to reduce the leakage current and hence improve the properties of the devices. At 3 V, the Schottky barrier height, dark current and photo to dark current ratio of the devices with Pt-recessed-electrodes and GaN/In0.35Ga0.65N MQWs active layer structure were 1.02 eV, 2.79×10-13 A and 6.8×103, respectively.
Bibliography-Chapter 1
[01] R. Juza and H. Hahn, “Über die kristallstrukturen von Cu3N, GaN und InN metallamide und metallnitride”, Z. Anorg. Allg. Chem., Vol. 239, pp. 282, 1938.
[02] R. Juza and H. Hahn, “On the nitrides of metals of the first sub-groups of periodic system”, Z. Anorg. Allg. Chem., Vol. 244, pp. 133, 1940.
[03] J. D. Brown, J. T. Swindell, M. A. L. Johnson, Yu Zhonghai, J. F. Schetzina, G. E. Bulman, K. Doverspike, S. T. Sheppard, T. W. Weeks, M. Leonard, H. S. Kong, H. Dieringer, C. Carter, and J. A. Edmond, Nitride Semiconductor or Symposium, Matt. Res. Soc., pp1179, 1998.
[04] Y. Matsushita, T. Uetani, T. Kunisato, J. Suzuki, Y. Ueda, K. Yagi, T. Yamaguchi, and T. Niina, “Dependence of SiC blue light-emitting diode dfficency on the p-type layer growth temperature”, Jpn. J. Appl. Phys., Part 1 Vol. 34, No. 4A, pp. 1833, 1995.
[05] M. A. Haase, J. Qinu, J. M. Depuydt, and H. Cheng, “Blue-green laser diodes”, Appl. Phys. Lett., Vol. 59, pp. 1272, 1991.
[06] H. Jeon, J. Ding, A. V. Nurmikko, W. Xie, D. C. Grillo, M. Kobayashi, R. L. Gunshor, G. C. Hua, and N. Otsuka, “Blue and green diode lasers in ZnSe-basedquantum wells”, Appl. Phys. Lett., Vol. 60, pp. 2045, 1992.
[07] W. Xie, D. C. Grillo, R. L. Gunshor, M. Kobayashi, H. Jeon, J. Ding, A. V. Nurmikko, G. C. Hua, and N. Otsuka, “Room temperature blue light emitting p-n diodes from Zn(S,Se)-based multiple quantum well structures”, Appl. Phys. Lett., Vol. 60, pp. 1999, 1992.
[08] H. P. Maruska and J. J. Tietjen, “The preparation and properties of vapor-deposited single-crystal-line GaN”, Appl. Phys. Lett., Vol. 15,No. 10, pp. 327, 1969.
[09] W. Seifert, R. Franzheld, E. Buttler, H. Sobotta, and V. Riede, “On the origin of free carriers in high-conducting n-GaN”, Crystal Res. and Technol., Vol. 18, No. 3, pp. 383, 1983.
[10] H. M. Manasevit, F. M. Erdmann and W. I. Simpson, “The use of metalorganics in the preparation of semiconductor materials”, J. Electro. Soc., Vol. 118, pp. 1864, 1971.
[11] I. Akasaki, and I. Hayashi, “Research on blue emitting devices”, Ind. Sci. Technol., Vol. 17, pp. 48, 1976.
[12] J. I. Pankove, E.A. Miller and J.E. Berkeyheister, “GaN blue light-emitting diodes”, J. Luminescence, Vol. 5, No. 1, pp. 84, 1972.
[13] J. I. Pankove, “Luminescence in GaN”, J. Luminescence, Vol. 7, pp. 114, 1973.
[14] H. Amano, N. Sawaki, I. Akasaki, and Y. Toyoda, “Metalorganic vapor phase epitaxial growth of a high quality GaN film using an AlN buffer layer”, Appl. Phys. Lett., Vol. 48, pp. 353, 1986.
[15] S. T. Strite and H. Morkoç, “GaN, AlN, and InN: a review”, J. Vacuum Science and Tech. B, Vol. 10, No. 4, pp. 1237, 1992.
[16] H. Amano, M. Kito, K. Hiramatsu and I. Akasaki, “P-type conduction in Mg-doped GaN treated with low-energy electron beam irradiation (LEEBI)”, Jpn. J. Appl. Phys., Vol. 28, pp. L2112, 1989.
[17] M. T. Duffy, C. C. Wang, G’D. O’Clock, S. H. McFarlane III and P. J. Zanzucchi, “Epitaxial growth and piezoelectric properties of AlN, GaN, and GaAs on sapphire or spinel”, J. Elect. Mat., Vol. 2, No. 2, pp.359, 1973.
[18] M. Razeghi and A. Rogalski, “Semiconductor ultraviolet detectors”, J. Appl. Phys., Vol. 79, No. 10, pp. 7433, 1996.
[19] M. A. Khan, J. N. Kuznia, A. R. Bhattarai and D. T. Olson, “Metal semiconductor field effect transistor based on single crystal GaN”, Appl. Phys. Lett., Vol. 62, No. 15, pp. 1786, 1993.
[20] S. Nakamura, T. Mukai, M. Senoh and M. Iwasa, “Thermal annealing effects on p-type Mg-doped GaN films”, Jpn. J. Appl. Phys., Vol. 31, pp. L139, 1992.
[21] H. Morkoc, S. Strite, G. B. Gao, M. E. Lin, B. Sverdlov and M. Burns, “Large-band-gap SIC, Ill-V nitride, and II-VI ZnSe-based semiconductor device technologies”, J. Appl. Phys., Vol. 76, No. 3, pp. 1363, 1994.
[22] M. A. Khan, M. S. Shur, J. N. Kuznia, Q. Chen, J. Burm and W. Schaff, “Temperature activated conductance in GaN/AlGaN heterostructure field effect transistors operating at temperatures up to 300 °C”, Appl. Phys. Lett., Vol. 66, No. 9, pp. 1083, 1995.
[23] O. Aktas, Z. F. Fan, S. N. Mohammad, A. E. Botchkarev and H. Morkoc, “High temperature characteristics of AlGaN/GaN modulation doped field-effect transistors”, Appl. Phys. Lett., Vol. 69, No. 25, pp. 3872, 1996.
[24] Y. Irokawa, J. Kim, F. Ren, K. H. Baik, B. P. Gila, C. R. Abernathy, S. J. Pearton, C. C. Pan, G. T. Chen and J. I. Chyi, “Activation kinetics of implanted Si+ in GaN and application to fabricating lateral Schottky diodes”, Appl. Phys. Lett., Vol. 83, No. 24, pp. 4987, 2003.
[25] J. K. Sheu, M. L. Lee, L. S. Yeh, C. J. Kao, C. J. Tun, M. G. Chen, G. C. Chi, S. J. Chang, Y. K. Su and C. T. Lee, “Planar GaN n+-p photodetectors formed by Si implantation into p-GaN”, Appl. Phys. Lett., Vol. 81, No. 22, pp. 4263, 2002.
[26] J. K. Sheu, C. J. Pan, G. C. Chi, C. H. Kuo, L. W. Wu, C. H. Chen, S. J. Chang and Y. K. Su, “White-light emission from InGaN–GaN multi-quantum-well light-emitting diodes with Si and Zn codoped active well layer”, IEEE Photo. Tech. Lett., Vol. 14, No. 4, pp. 450, 2002.
[27] J. C. Zolper, R. J. Shul, A. G. Baca, R. G. Wilson, S. J. Pearton and R. A. Stall, “Ion-implanted GaN junction field effect transistor”, Appl. Phys. Lett., Vol. 68, No.16, pp. 2273, 1996.
[28] J. K. Sheu and G. C. Chi, “The doping process and dopant characteristics of GaN”, J. Phys.: Condens. Mat., Vol. 14, pp. R657, 2002.
[29] F. Ren, C. R. Abernathy, J. M. Van Hove, P. P. Chow, R. Hickman, J. J. Klaasen, R. F. Kopf, H. Cho, K. B. Jung, J. R. La Roche, R. G. Wilson, J. Han, R. J. Shul, A. G. Baca, and S. J. Pearton, “300°C GaN/AlGaN heterojunction bipolar transistor”, MRS Internet J. Nitride Semicond. Res., Vol. 3, pp. 41, 1998.
[30] M. A. Khan, J. N. Kuznia, D. T. Olson, W. J. Schaff, J. W. Burm and M. S. Shur, “Microwave performance of a 0.25 μm gate AIGaN/GaN heterostructure field effect transistor”, Appl. Phys. Lett., Vol. 65, No. 9, pp. 1121, 1994.
[31] M. A. Khan, Q. Chen, M. S. Shur, B. T. Dermott, J. A. Higgins, J. Burm, W. Schaff and L. F. Eastman, “Short-channel GaN/AIGaN doped channel heterostructure field effect transistors with 36.1 cutoff frequency”, Electron. Lett., Vol. 32, No. 4, pp. 357, 1996.
[32] G. Parish, S. Keller, P. Kozodoy, J. P. Ibbetson, H. Marchand, P. T. Fini, S. B. Fleischer, S. P. DenBaars, U. K. Mishra and E. J. Tarsa, “High-performance (Al,Ga)N-based solar-blind ultraviolet p-i-n detectors on laterally epitaxially overgrown GaN”, Appl. Phys. Lett., Vol. 75, No. 2, pp. 247, 1999.
[33] Q. Chen, J. W. Yang, A. Osinsky, S. Gangopadhyay, B. Lim, M. Z. Anwar, M. A. Khan, D. Kuksenkov and H. Temkin, “Schottky barrier detectors on GaN for visible-blind ultraviolet detection”, Appl. Phys. Lett., Vol. 70, No. 17, pp. 2277, 1997.
[34] C. H. Chen, S. J. Chang, Y. K. Su, G. C. Chi, J. Y. Chi, C. A. Chang, J. K. Sheu and J. F. Chen, “GaN metal–semiconductor–metal ultraviolet photodetectors with transparent indium–tin–oxide Schottky contacts”, IEEE Photo. Tech. Lett., Vol. 13, No. 8, pp. 848, 2001.
[35] H. P. Maruska and J. J. Tietjen, “The preparation and properties of vapor-deposited single-crystal-line GaN”, Appl. Phys. Lett., Vol. 15, No.10, pp. 327, 1969.
[36] P. B. Perry and R. F. Rutz, “The optical absorption edge of single-crystal AIN prepared by a close-spaced vapor process”, Appl. Phys. Lett., Vol. 33, No. 4, pp. 319, 1978.
[37] S. Itoh, N. Nakayama, S. Matsumoto, M. Nagai, K. Nakano, M. Ozawa, H. Okuyama, S. Tomiya, T. Ohata, M. Ikeda, A. Ishibashi and Y. Mori, “ZnCdSe/ZnSSe/ZnMgSSe SCH laser diode with a GaAs buffer layer”, Jpn. J. Appl. Phys., Part 2, Vol. 33, No. 7A, pp. L938, 1994.
Bibliography-Chapter 2
[01] S. A. Safvi, J. M. Redwing, M. A. Tischler, and T. F. Kuech, “GaN Growth by Metallorganic Vapor Phase Epitaxy”, J. Electrochem. Soc., Vol.144, pp.1789, 1997.
[02] J. R. Creighton, G. T. Wang, W. G. Breiland, and M. E. Coltrin, “Nature of the parasitic chemistry during AlGaInN OMVPE”, J. Cryst. Growth, Vol. 261, pp. 204, 2004.
[03] T. G. Mihopoulos, Reaction and Transport Processes in OMCVD: Selective and Group III-Nitride Growth. Ph.D thesis, Massachusetts Institute of technology, 1999.
[04] R. P. Parikh, and R. A. Adomaitis, “An overview of gallium nitride growth chemistry and its effect on reactor design: Application to a planetary radial-flow CVD system”, J. Cryst. Growth, Vol. 286, pp.259, 2006.
[05] E. Mesic, M. Mukinovic, and G. Brenner, “Numerical study of AlGaN growth by MOVPE in an AIX200 RF horizontal reactor”, Comp. Mater. Sci., Vol. 31, pp. 42, 2004.
[06] A. Hirako, K. Kusakabe, and K. Ohkawa, “Modeling of Reaction Pathways of GaN Growth by Metalorganic Vapor-Phase Epitaxy Using TMGa/NH3/H2 System: A Computational Fluid Dynamics Simulation Study”, Jpn. J. Appl. Phys., Vol. 44, pp. 874, 2005.
[07] J. R. Creighton, G. T. Wang, and M. E. Coltrin, “Fundamental chemistry and modeling of group-III nitride MOVPE”, J. Cryst. Growth, Vol. 298, pp.2, 2007.
[08] D. F. Davidson, K. Khose-Hoeinghaus, A. Y. Chang, and R. K. Hanson, Int. J. Chem. Kinet., Vol. 22, pp.513, 1990.
[09] R. P. Parikh, and R. A. Adomaitis, “Nitrogen precursors in metalorganic vapor phase epitaxy of (Al,Ga)N”, J. Cryst. Growth, Vol.156, pp.140, 1995.
[10] W. D. Monnery, K. A. Hawboldt, A. E. Pollock, and W. Y. Svrcek, Ind. Eng. Chem. Res., Vol. 40, pp.144, 2001.
[11] V. S. Ban, “Mass Spectrometric Studies of Vapor-Phase Crystal Growth”, J. Electrochem. Soc., Vol.119, pp.761, 1972.
[12] S. S. Liu, D. A. Stevenson, “Growth Kinetics and Catalytic Effects in the Vapor Phase Epitaxy of Gallium Nitride”, J. Electrochem. Soc., Vol.125, pp.1161, 1978.
[13] M. G. Jacko, and S. J. W. Proce, Can. J. Chem., Vol.41, pp.1560, 1962.
[14] S. P. DenBaars, B. Y. Maa, P. D. Dapkus, A. D. Danner, and H. C. Lee, “Homogeneous and heterogeneous thermal decomposition rates of trimethylgallium and arsine and their relevance to the growth of GaAs byMOCVD”, J. Cryst. Growth, Vol.77, pp.188, 1986.
[15] A. Thon, and T. F. Kuech, “High temperature adduct formation of trimethylgallium and ammonia”, Appl. Phys. Lett., Vol.69, pp.55, 1996.
[16] J. B. Williams, The Lewis Acid-Base Concepts: An Overview, Wiley, New York, 1980.
[17] P. W. Atkins, Physical Chemistry, seventh ed., Freeman, New York, 2002.
[18] G. B. Stringfellow, Organometallic Vapor-Phase Epitaxy: “Theory and Practice”, 2nd Edition, Academic, Press, San Diego, 1999.
[19] J. F. Zhang and Y. Hao, “AlGaN/GaN Two-dimensional gas : a critical review”, J. Xid. Uni., Vol. 30, No. 3, pp. 326, 2003.
[20] O. Ambacher, “Two-dimensional electron gases induced by spontaneous and piezoelectric polarization charges in N- and Ga-face AlGaN/GaN heterostructures”, J. Appl. Phy., Vol. 85, No. 6, pp. 3222, 1999.
[21] R. Dimitrov, “Two-dimensional electron gases in Ga-face and N-face AlGaN/GaN heterostructures grown by plasma-induced molecular beam exotaxy and metalorganic chemical vapor deposition on sapphire”, J. Appl. Phy., Vol. 87, No. 7, pp. 3375, 2000.
[22] E. H. Rhoderick and R. H. Williams, “Metal-Semiconductor Contacts”, Clarendon Press, Oxford, 1998.
[23] S. M. Sze, “Semiconductor Device Physics and Technology”, pp. 160, 1985.
[24] S. M. Sze, “Semiconductor Device Physics and Technology”, pp. 278, 1985.
[25] S. M. Sze, D. J. Coleman, JR. and A. Loya, “Current Transport in Metal-Semiconductor-Metal (MSM) structures”, Solid-State Electronics, Vol. 14, pp. 1209, 1971.
[26] H. Morkoc, “Nitride Semiconductor and Devices”, Springer, New York, pp. 196, 2004.
[27] H .Norde, “A modified forword I-V plot for Schottky diodes with high series resistance”, J. Appl. Phys., Vol. 50, pp. 5025, 1979.
[28] E. H. Rhoderick, "Metal-Semiconductor Contacts", IEE Proc.-I, Vol. 129, No. 1, pp. 1, 1982.
[29] S. Averine, Y. C. Chan, and Y. L. Lam, “Evaluation of Schottky contact parameters in metal-semiconductor-metal photodiode structures”, Appl. Phys. Lett., Vol. 77, No. 2, pp. 274-276, 2000.
[30] D. K. Bowen and B. K. Tanner, “High Resolution X-ray Diffractometry and Topography”, CRC Press, USA, Feb. 1998.
[31] C. H. Wu, “MOVPE Growth of (In)GaNAs and GaInNP for Quantum Well Lasers and Heterojunction Bipolar Transistors ”, Ph.D. dissertation, NCKU, 2004.
[32] Dieter K. Schroder, “Semiconductor Material and Device Characterization”, 3rd Edition, Wiley-IEEE Press, 2006.
[33] Y. H. Cho, G. H. Gainer, A. J. Fischer, and J. J. Song, S. Keller, U. K. Mishra, and S. P. DenBaars, “``S-shaped' temperature-dependent emission shift and carrier dynamicsin InGaN/GaN multiple quantum wells”, Appl. Phys. Lett., Vol. 73, No. 10, pp. 1370-1372, 1998.
[34] T. Wang, J. Bai, and S. Sakai, J. K. Ho, “Investigation of the Emission Mechanism in InGaN/GaN-Based Light-Emitting Diodes”, Appl. Phys. Lett., Vol. 78, No. 18, pp. 2617-2619, 2001.
[35] T. H. Hsueh, J. K. Sheu, W. C. Lai, Y. T. Wang, H. C. Kuo and S. C. Wang, “Improvement of the Efficiency of InGaN–GaN Quantum-Well Light-Emitting Diodes Grown With a Pulsed-Trimethylindium Flow Process”, IEEE Photonics Technol. Lett., Vol. 21, No. 7, pp. 414-416, 2009.
[36] A. Yasan, R. McClintock, K. Mayes, D. H. Kim, P. Kung, and M. Razeghi, “Photoluminescence study of AlGaN-based 280 nm ultraviolet light-emitting diodes”, Appl. Phys. Lett., Vol. 83, No. 20, pp. 4083-4085, 2003.
Bibliography-Chapter 3
[01] M. Razeghi and A. Rogalski, “Semiconductor ultraviolet detectors”, J. Appl. Phys., Vol.79, pp.7433, 1996.
[02] C. J. Collins, U. Chowdhury, M. M. Wong, B. Yang, A. L. Beck, R. D. Dupuis and J. C. Campbell, ”Improved solar-blind detectivity using an AlxGa1-xN heterojunction p-i-n photodiode”, Appl. Phys. Lett., Vol. 80, No. 20, pp. 3754, 2002.
[03] T. K. Ko, S. C. Shei, S. J. Chang, Y. K. Su, Y. Z. Chiou, Y. C. Lin, C. S. Chang, W. S. Chen, C. K. Wang, J. K. Sheu and W. C. Lai, “Flip-Chip p(GaN)-i(GaN)-n(AlGaN) Narrowband UV-A Photosensors”, IEEE Sens. J., Vol. 6, No. 4, pp. 964, 2006.
[04] E. Monroy, M. Hamilton, D. Walker, P. Kung, F. J. Sanchez and M. Razeghi, “High-quality visible-blind AlGaN p-i-n photodiodes”, Appl. Phys. Lett., Vol. 74, No. 8, pp. 1171, 1999.
[05] Q. Chen, J. W. Yang, A. Osinsky, S. Gangopadhyay, B. Lim, M. Z. Anwar, M. A. Khan, D. Kuksenkov and H. Temkin, “Schottky barrier detectors on GaN for visible-blind ultraviolet detection”, Appl. Phys. Lett., Vol.70, No.17, pp. 2277, 1997.
[06] K. H. Lee, S. J. Chang, P. C. Chang, Y. C. Wang and C. H. Kuo, “High quality GaN-based Schottky barrier diodes”, Appl. Phys. Lett., Vol. 93, No.13, pp.132110, 2008.
[07] S. J. Chang, K. H. Lee, P. C. Chang, Y. C. Wang, C. H. Kuo and S. L. Wu, “AlGaN/GaN Schottky Barrier Photodetector With Multi-MgxNy/GaN Buffer ”, IEEE Sens. J., Vol. 9, No. 2, pp. 87, 2009.
[08] S. J. Chang, M. L. Lee, J. K. Sheu, W. C. Lai, Y. K. Su, C. S. Chang, C. J. Kao, G. C. Chi and J. A. Tsai, “GaN Metal–Semiconductor–Metal Photodetectors With Low-Temperature-GaN Cap Layers and ITO Metal Contacts”, IEEE Electron. Device Lett., Vol. 24, No. 4, pp. 212, 2003.
[09] S. J. Chang, Y. D. Jhou, Y. C. Lin, S. L. Wu, C. H. Chen, T. C. Wen and L. W. Wu, “GaN-Based MSM Photodetectors Prepared on Patterned Sapphire Substrates”, IEEE Photo. Technol. Lett., Vol. 20, No. 22, pp. 1866, 2008.
[10] S. Wang, T. Li, J. M. Reifsnider, B. Yang, C. Collins, A. L. Holmes and J. C. Campbell, “Schottky Metal–Semiconductor–Metal Photodetectors on GaN Films Grown on Sapphire by Molecular Beam Epitaxy”, IEEE J. Quantum. Elect., Vol. 36, No. 11, pp. 1262, 2000.
[11] G. Parish, S. Keller, P. Kozodoy, J.A. Ibbetson, H. Marchand, P.T. Fini, S.B. Fleischer, S.P. DenBaars and K. Mishra, “High-performance (Al,Ga)N-based solar-blind ultraviolet p–i–n detectors on laterally epitaxially overgrown GaN”, Appl. Phys. Lett., Vol. 75, pp. 247, 1999.
[12] E. Monroy, M. Hamilton, D. Walker, P. Kung, F.J. Sa´nchez and M. Razeghi, “High-quality visible-blind AlGaN p-i-n photodiodes”, Appl. Phys. Lett., Vol. 74, pp. 1171, 1999.
[13] S.L. Rumyantsev, N. Pala, M.S. Shur, R. Gaska, M.E. Levinshtein, V. Divarahan, J. Yang, G. Simin and A. Khan, “Low-frequency noise in Al0.4Ga0.6N-based Schottky barrier photodetectors”, Appl. Phys. Lett., Vol. 79, pp. 866, 2001.
[14] C.H. Chen, S.J. Chang, Y.K. Su, G.C. Chi, J.Y. Chi, C.A. Chang, J.K. Sheu and F. Chen, “GaN metal-semiconductor-metal ultraviolet photodetectors with transparent indium-tin-oxide Schottky contacts”, IEEE Photo. Technol. Lett., Vol. 13, pp. 848, 2001.
[15] D. G. Parker and G. Say, “Indium tin oxide/GaAs photodiodes for millimetric-wave applications”, Electron. Lett., Vol. 22, pp.1266, 1998.
[16] T. Maeda, Y. Koide and M. Murakami, “Effects of NiO on electrical properties of NiAu-based ohmic contacts for p-type GaN”, Appl. Phys. Lett., Vol. 75, pp. 4145, 1999.
[17] J.K. Ho, C.S. Jong, C.C. Chiu, C.N. Huang, C.Y. Chen and K. Shih, “Low-resistance ohmic contacts to p-type GaN”, Appl. Phys. Lett., Vol. 74, pp. 1275, 1999.
[18] T. Nakahara, S. Matsuo, C. Amano and T. Hurikawa, “Switchable-logic photonic switch array monolithically integrating MSM’s, FET’s and MQW modulators”, IEEE Photo. Technol. Lett., Vol.7, pp. 53, 1995.
[19] C. L. Yu, C. H. Chen, S. J. Chang, Y. K. Su, S. C. Chen, P. C. Chang, P. C. Chen, M. H. Wu, H. C. Chen, and K. C. Su, “In0.37Ga0.63N Metal-Semiconductor-Metal Photodetectors With Recessed Electrodes”, IEEE Photonics Technol. Lett., Vol. 17, No. 4, pp. 875, 2005.
[20] H. Jiang, A. Okui, H. Ishikawa, C. L. Shao, T. Egawa and T. Jimbo, ”GaN Metal-Semiconductor-Metal UV Photodetector with Recessed Electrodes”, Jpn. J. Appl. Phys., Vol. 41, pp. L34,2002.
[21] C. H. Chen, S. J. Chang, M. H. Wu, S. Y. Tsai, and H. J. Chien, ”AlGaN Metal–Semiconductor–Metal Photodetectors with Low-Temperature AlN Cap Layer and Recessed Electrodes”, Jpn. J. Appl. Phys., Vol. 49, pp. 04DG05 ,2010.
[22] B. Heying, X. H. Wu, S. Keller, Y. Li, D. Kapolnek, B. P. Keller, S. P. DenBaar, and J. S. Speck, “Role of threading dislocation structure on the x-ray diffraction peak widths in epitaxial GaN films”, Appl. Phys. Lett. Vol. 68, pp. 643, 1996.
[23] O. Ambacher, B. Foutz, J. Smart, J. R. Shealy, N. G. Weimann, K. Chu, M. Murphy, A. J. Sierakowski, W. J. Schaff, and L. F. Eastman, “Two dimensional electron gases induced by spontaneous and piezoelectric polarization in undoped and doped AlGaN/GaN heterostructures”, J. Appl. Phys., Vol. 87, No. 1, pp. 334, 2000.
[24] J. P. Ibbetson, P. T. Fini, K. D. Ness, S. P. DenBaars, J. S. Speck, and U. K. Mishra, “Polarization effects, surface states, and the source of electrons in AlGaN/GaN heterostructure field effect transistors”, Appl. Phys. Lett., Vol. 77, No. 2, pp. 250, 2000.
[25] V. Fiorentini, F. Bernardini, and O. Ambacher, “Evidence for nonlinear macroscopic polarization in III–V nitride alloy heterostructures”, Appl. Phys. Lett., Vol. 80, No. 7, pp. 1204, 2002.
Bibliography-Chapter 4
[01] S. J. Chang, M. L. Lee, J. K. Sheu, W. C. Lai, Y. K. Su, C. S. Chang, C. J. Kao, G. C. Chi and J. A. Tsai, “GaN Metal–Semiconductor–Metal Photodetectors With Low-Temperature-GaN Cap Layers and ITO Metal Contacts”, IEEE Electron. Device Lett., Vol. 24, No. 4, pp. 212, 2003.
[02] J. L. Li, W. R. Donaldson and T. Y. Hsiang, “Very Fast Metal–Semiconductor–Metal Ultraviolet Photodetectors on GaN With Submicron Finger Width”, IEEE Photo. Tech. Lett., Vol. 15, No. 8, pp. 1141, 2003.
[03] M. L. Lee, J. K. Sheu, Y. K. Su, S. J. Chang, W. C. Lai and G. C. Chi, “Reduction of Dark Current in AlGaN–GaN Schottky-Barrier Photodetectors With a Low-Temperature-Grown GaN Cap Layer”, IEEE Elec. Dev. Lett., Vol. 25, No. 9, pp. 593, 2004.
[04] S. Nakamura, T. Mukai, and M. Senoh, “High-brightness InGaN/AlGaN double-heterostructure blue-green-light-emitting diodes”, J. Appl. Phys., Vol. 76, pp. 8189, 1994.
[05] I. Akasaki, and H. Amano “Crystal Growth and Conductivity Control of Group III Nitride Semiconductors and Their Application to Short Wavelength Light Emitters”, Jpn. J. Appl. Phys., Vol.36, pp. 5393, 1997.
[06] E. F. Schubert, and J. K. Kim, “Solid-state light sources getting smart”, Science, Vol. 308, pp. 1274, 2005.
[07] S. J. Chang, W. C. Lai, Y. K. Su, J. F. Chen, C. H. Liu, and U. H. Liaw, “InGaN-GaN multiquantum-well blue and green light-emitting diodes”, IEEE J. Sel. Top Quant. Electron., Vol.8, pp. 278,2002.
[08] S. J. Chang, C. H. Kuo, Y. K. Su, L. W. Wu, J. K. Sheu, T. C. Wen, W. C. Lai, J. F. Chen, and J. M. Tsai, “400-nm InGaN-GaN and InGaN-AlGaN multiquantum well light-emitting diodes”, IEEE J. Sel. Top Quant. Electron., Vol.8, pp. 744, 2002.
[09] C. K. Wang, S. J. Chang, Y. K. Su, Y. Z. Chiou, S. C. Chen, C. S. Chang, T. K. Lin, H. L. Liu, and J. J. Tang, “GaN MSM UV photodetectors with titanium tungsten transparent electrodes”, IEEE Trans. Electron. Devices, Vol. 53, pp. 38, 2006.
[10] E. Monroy, T. Palacios, O. Hainaut, F. Omnes, F. Calle, and J. F. Hochedez, “Assessment of GaN metal–semiconductor–metal photodiodes for high-energy ultraviolet photodetection”, Appl. Phys. Lett., Vol. 80, pp. 3198, 2002.
[11] T. Tut, M. Gokkavas, B. Butun, S. Butun, E. Ulker, and E. Ozbay , “Experimental evaluation of impact ionization coefficients in AlxGa1−xN based avalanche photodiodes”, Appl. Phys. Lett., Vol. 89, pp. 183524, 2006
[12] H. Jiang, and T. Egawa, “Demonstration of large active area AlGaN solar-blind Schottky photodiodes with low dark current”, Electron. Lett., Vol. 42, pp. 1120, 2006.
[13] E. Ozbay, N. Biyikli, I. Kimukin, T. Kartaloglu, T. Tut, and O. Aytur, “High-performance solar-blind photodetectors based on Al/sub x/Ga/sub 1-x/N heterostructures”, IEEE J. Sel. Top Quant. Electron., Vol. 10, pp. 742, 2004.
[14] R. McClintock, A. Yasan, K. Mayes, D. Shiell, S. R. Darvish, P. Kung, and M. Razeghi, “High quantum efficiency AlGaN solar-blind p-i-n photodiodes”, Appl. Phys. Lett., Vol. 84, pp. 1248, 2004.
[15] I. S. Seo, I. H. Lee, Y. J. Park, and C. R. Lee, “Characteristics of UV photodetector fabricated by Al0.3Ga0.7N/GaN heterostructure”, J. Cryst. Growth, Vol. 252, pp. 51, 2003
[16] P. Sandvik, K. Mi, F. Shahedipour, R. McClintock, A. Yasan, P. Kung, and M. Razeghi, “AlxGa1−xN for solar-blind UV detectors”, J. Cryst. Growth, Vol. 231, pp. 366, 2001.
Bibliography-Chapter 5
[01] T. M. Kuan, S. J. Chang, C. H. Ko, Y. K. Su, J. B. Webb, J. A. Bardwell, Y. Liu, H. Tang, W. J. Lin, Y. T. Cherng, and W. H. Lan, “High optical gain AlGaN/GaN 2DEG photodetectors,” Jpn. J. Appl. Phys. Lett., Vol. 42, pp. 5563, 2003.
[02] S. J. Chang, T. M. Kuan, Y. K. Su, C. H. Ko, J. B. Webb, J. A. Bardwell, Y. Liu, H. Tang, W. J. Lin, Y. T. Cherng, and W. H. Lan, “Nitride-based 2DEG photodetectors with a large AC responsivity,” Solid State Electron., Vol. 47, pp. 2023, 2003.