| 研究生: |
高銘聰 Kao, Ming-Tsong |
|---|---|
| 論文名稱: |
運用掃描探針顯微術於矽晶圓上生長氧化矽
理論研究及實驗驗證 Fabrication of Nanoscale Oxide Patterns On Silicon Wafer Using Scanning Probe Microscope |
| 指導教授: |
林仁輝
Lin, Ren-Hui |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2002 |
| 畢業學年度: | 90 |
| 語文別: | 中文 |
| 論文頁數: | 110 |
| 中文關鍵詞: | 原子力顯微鏡微影 |
| 外文關鍵詞: | AFM-lithography |
| 相關次數: | 點閱:71 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文主要是以電化學反應的觀點,探討使用原子力顯微鏡在矽晶圓上生長二氧化矽之行為及其形貌上的研究。目前國際間的研究並沒有很多理論模型來驗證生長的二氧化矽高度及寬度,隨著各個不同參數的改變所造成的變化。我們所提出的理論,可分成兩部分:一部份是由力學平衡的角度,來建構水橋的輪廓;令一部份則是由電化學反應中的離子濃度統御方程式,來分析矽晶圓表面氫氧離子即將與矽晶片反應前的濃度分佈,由濃度分佈的大小來分析所生長的二氧化矽半高寬(FWHM)。
針對所提出的理論是在穩態 下建立的模式,因此在實驗進行前,先找出二氧化矽成長速率近乎穩態的時間點。由實驗結果及Dataga[51]所提出的理論依據,知道二氧化矽成長速率近乎穩態的時間點為0.5秒。藉由水橋內電場強度的分佈,配合離子濃度統御方程式,得到矽晶圓表面氫氧離子濃度分佈,由濃度分佈繪出二氧化矽形貌。其中水橋內電場強度的分佈又與施加的電壓、探針半徑及探針與矽晶圓最短間距相關,因此所建立的理論模型在分析氧化時間0.5秒下,施加的電壓、探針半徑及探針與矽晶圓最短間距對形成的二氧化矽半高寬的估算,並與實驗結果相比較。
由實驗結果,影響生成的二氧化矽半高寬的三個參數。當施加的電壓越大,生成的二氧化矽寬度越大;探針半徑尺寸越大,生成的二氧化矽寬度越大;探針與矽晶圓最短間距拉遠時,生成的二氧化矽寬度變小。與建立的理論模型,所分析的結果,趨勢正確。
The behavior and profile of oxide grown by the Atomic Force Microscope (AFM) probe on silicon wafer is researched in view of electrochemical reaction in this study. There are not many theoretic models describing how the parameters affect height and width of grown silicon oxide. Two parts are involved in our theoretic analysis: one is the profile of water bridge determined by balance of mechanics; and the other is the FWHM of grown dioxide analyzed by calculating the OH ion distribution on the silicon wafer before and after reaction by the governing equation.
Before proceeding experiments, the time how long the reaction and the growing rate of silicon oxide get steady is tested in order to check if the steady state analysis is suitable. According to the result of the experimental tests and Dataga’s theory, the growing rate goes almost steady after 0.5 seconds. Therefore the oxidation time is the fixed parameter, and the changing parameters are the induced voltage, V, probe’s radius of curvature, R, and the shortest distance between probe and wafer, D.
According to the experimental results and the theoretical analysis, the three parameters affect the grown profile of silicon dioxide as following: the larger induced voltage, the wider oxide; the bigger probe’s radius of curvature, the wider oxide; the smaller distance between probe and wafer, the narrower oxide. The experimental results show the same trends as the theoretical analysis.
1. R. Czajka, L. Jurczyszyn, and H. Rafii-Tabar., “Surface Physics at the Nano-Scale Via Scanning Probe Microscopy and Molecular Dynamics Simulations” Progress in Surface Science, Vol. 59,pp.13(1998)
2. G. Binning, H. Rohrer, C. Gerber, and E. Weibel., “Physics Research with a Scanning Tunneling Microscopy” Phys. Rev. Lett.Vol.49,pp.57(1983)
3. M. A. McCord, R. F. W. Pease “Fabrication of Silicon at the Scanning Tunneling Microscope “, J. Vac. Sci. Technol.B3., pp.198(1985)
4. E. S. Snow, P. M. Campbell, and P. J. McMarr., “Fabrication of Silicon Nanostructures with a Scanning Tunneling Microscope” Phys. Rev. Lett.,Vol.63(6),pp.749(1993)
5. F. Marchi, V. Bouchiat, H. Dallaporta, V. Safarov, and D. Tonneau., “Selective Surface Modifications with a Scanning Tunneling Microscope” J. Vac. Sci. Technol. B 16(6), pp.2952(1998)
6. 黃英碩、張嘉升,”掃描穿隧顯微術”,科儀新知,21(5),pp.36(2000)
7. 汪建民,材料分析 (1998)
8. 吳忠霖,簡世森、果尚志,”以原子力顯微鏡製作奈米結構”,物理雙月刊,21(4),pp.429(1999)
9. 簡世森、果尚志,”原子力顯微鏡微影技術與應用”,科儀新知,21(5),pp.45(2000)
10. R. D. Ramsier, R. M. Ralich, and S. F. Lyuksyutov., “ Nanolithography of Silicon: An Approach for Investigating Tip-Surface Interactions During Writing “ Appl. Phys. Lett.Vol.79(17),pp.2820(2001)
11. M. Calleja, J. Anguita, R. Garcia, K. Birkelund, F. Perez-Murano, and J. A. Dagata., ”Nanometre-Scale Oxidation of Silicon Surfaces by Dynamic Force Microscopy: Reproducibility, Kinetics and Nanofabrication “ Nanotechnology, 10,pp.34(1999)
12. P. Avouris, T. Hertel, and R. Martel., ”Atomic Force Microscope Tip-Induced Local Oxidation of Silicon: Kinetics, Mechanism, and Nanofabrication” Appl. Phys. Lett.Vol.71(2),pp.285(1997)
13. T. Teuschler, K. Mahr, S. Miyazaki, M. Hundhausen, and L. Ley, “Nanometer-Scale Field-Induced Oxidation of Si(111): H by a Conducting-probe Scanning Force Microscope: Doping Dependence and Kinetics” Appl., Phys. Lett.Vol.67(21),pp.3144(1995)
14. D. Wang, L. Tsau, and K. L. Wang., “Nanometer-Structure Writing on Si(100) Surface Using a Non-contact Mode Atomic Force Microscope“ Appl. Phys. Lett.Vol.65(11),pp.1415(1994)
15. F. S.-S. Chien, C.-L. Wu, Y.-C. Chou, T. T. Chen, and S. Gwo., “Nanomachining of (110)-oriented Silicon by Scanning Probe Lithography and Anisotropic Wet Etching “ Appl. Phys. Lett.Vol.75(16),pp.2429(1999)
16. E. S. Snow, and P. M. Campbell., “Fabrication of Si Nanostructures with an Atomic Force Microscope “ Appl. Phys. Lett.Vol.64(15),pp.1932(1994)
17. 莊達人,VLSI 製造技術 (1995)
18. H. Watanabe and Y. Todokoro., “Phase-shifting Lithography : Maskmaking and its Application “ J. of Vac. Sci. Tchnology B,Vol.11(6),pp.2669(1993)
19. P. Luehrmann.,” Fabrication of Silicon Lithography Using X-ray” Microlithography World, pp.15(1994)
20. D. F. Ilten and K. V. Patel., “Using electron Beam with Silicon Lithography “ Image Technology, pp.9(1979)
21. J. A. Dagata, J. Schneir, H. H. Harary, C. J. Evans, M. T. Postek, and J. Bennett., “Modification of hydrogen-passivated silicon by a scanning tunneling microscope operating in air” Appl. Phys. Lett.,Vol.56(20),pp.2001(1990)
22. E. S. Snow, P. M. Campbell, and F. K. Perkins,” Nanofabrication with proximal probes “Proc. IEEE, Vol.85(4),pp.601(1997)
23. K. Matsumoto., “Fabrication of Ti/SiO2/Si Lithography” Proc. IEEE, Vol.85(4) pp.612(1997)
24. F. S.-S. Chien, Y. C. Chou, T. T. Chen, W.-F. Hsieh, T.-S. Chao, and S. Gwo., “Nano-oxidation of Silicon Nitride Films With an Atomic Force Microscope: Chemical Mapping, Kinetics, and Applications” J. of Appl. Phys., Vol.89(4),pp.2465(2000)
25. H. Sugimura.. “Nano-oxidation of Ti Using Atomic Force Microscope” J. of Appl. Phys., Vol.74((6),pp.3638(1993)
26. D. Wang., “Oxidation of metals on Atomic Force Microscope” Appl. Phys. Lett.,Vol.56(23),pp.2298 (1990)
27. S. Gwo., “Metal surface modifications with a Atomic Force Microscope Appl. Phys. Lett.,Vol.74(21),pp.3134(1999)
28. J. A. Dagata., “Silicon Oxidation model for Atomic Force Microscope kinetics” Appl. Phys. Lett.,Vol.56(14),pp.1311 (1990)
29. H. C. Day., “Fabrication of Silicon with a Atomic Force Microscope Appl. Phys. Lett.,Vol.62(13),pp.1516 (1993)
30. E. S. Snow., “Oxidation of Silicon Surface with a Scanning Probe Microscope” Appl. Phys. Lett.,Vol.64(2),pp.137 (1994)
31. Y. Okada., “Nanooxidation Using a Scanning Probe Microscope “ J. of Appl. Phys., Vol.88(10),pp.5538(2000)
32. F. S.-S. Chien., “Fabrication of AlNd/MoN with a Atomic Force Microscope” J. of Appl. Phys., Vol.89(3),pp.1647(2001)
33. M. Calleja, and R. Garcia, Appl. Phys. Lett., “Nano-Oxidation of Silicon Surfaces by Noncontact Atomic-Force Microscopy: Size Dependence On Voltage and Pulse Duration “ Vol.76(23),pp.3427(2000)
34. F. Perez-Murano, K. Birkelund, K. Morimoto, and J. A. Dagata., “Voltage Modulation Scanned Probe Oxidation“ Appl. Phys. Lett.,Vol.75(2),pp.199(1999)
35. H. Jungblut, D. Wille, and H. J. Lewerenz, “Nano-Oxidation of H-terminated p-Si(100) Influence of The Humidity on Growth and Surface Properties of Oxide Islands “Appl. Phys. Lett.,Vol.78(2),pp.168(2000)
36. P. Avouris, T. Hertel, and R. Martel, “Atomic Force Microscope Tip-Induced Local Oxidation of Silicon : Kinetics, Mechanism, and Nanofabrication “ Appl. Phys. Lett.,Vol.71(2),pp.285(1997)
37. R. Garcia, M. Calleja, and F. Perez-Murano., “Local Oxidation of Silicon Surfaces by Dynamic Force Microscopy : Nanofabrication and Water Bridge Formation “ Appl. Phys. Lett.,Vol.72(18),pp.2295(1998)
38. R. Garcia, M. Calleja, and H. Rohrer., “Patterning of Silicon Surfaces With Noncontact Atomic Force Microscopy : Field-induced Formation of Nanometer-size Water Bridge” J. of Appl. Phys.,Vol.86(4),pp.1898(1999)
39. J. A. Dagata, T. Inoue, J. Ltoh, K. Matsumoto, and H. Yokoyama, “Role of Space Charge in Scanned Probe Oxidation” J. of Appl. Phys., Vol.84(12),pp.6891(1998)
40. M. Tello, and R. Garcia., “Nano-oxidation of Silicon Surfaces : Comparison of Noncontact and Contact Atomic-Force Microscopy Methods “ Appl. Phys. Lett.,Vol.79(3),pp.424(2001)
41. D. Stievenard, P. A. Fontaine, and E. Dubois, “Nanooxidation Using a Scanning Probe Microscope : An Analytical Model Based on Field Induced Oxidation “ Appl. Phys. Lett.,Vol.70(24),pp.3272(1997)
42. E. Dubois, and J.-L. Bubendorff., “Kinetics of Scanned Probe Oxidation : Space-charge Limited Growth “ J. of Appl. Phys.,Vol.87(11),pp.8148(2000)
43. P. N. Dunn, “Lithography process about Mask” Solid State Technology, pp.49(1994)
44. B. Legrand, and D. Stievenard., “Atomic Force Microscope Tip-surface Behavior Under Continuous Bias or Pulsed Voltages in Noncontact Mode “Appl. Phys. Lett.,Vol.76(8), pp.1018(1999)
45. W. Adamson, Physical Chemistry of Surfaces (1990)
46. S. L. Konsek, R. J. N. Coope, T. P. Pearsall, and T. Tiedje., “Selective Surface Modifications with a Scanning Tunneling Microscope “Appl. Phys. Lett.Vol.70(14),pp.1846(1999)
47. John S. Newman., Electrochemical Systems,2nd ed (1994)
48. 黃進益,電化學的原理及應用 (1998)
49. J. N. Israelachvili, Intermolecular And Surface Forces (1992)
50. 趙承琛,界面化學 (1996)
51. J. A. Dagata, F. Perez-Murano, G. Abadal, K. Morimoto, T. Inoue, J. ltoh, and H. Yokoyama., “Predictive Model for Scanned Probe Oxidation Kinetics “ Appl. Phys. Lett.,Vol.76(19),pp.2710(2000)
52. 果尚志, ”掃描探針微影術在奈米科技上之應用” ,工業材料雜誌,173期,pp.111(2001)