| 研究生: |
倪嘉亨 Ni, Chia-Heng |
|---|---|
| 論文名稱: |
結合效果導向與非目標分析探討臺灣南部河川之內分泌干擾物 Detection of endocrine disrupting compounds in rivers from Southern Taiwan by combined effect-directed and non-target analysis |
| 指導教授: |
周佩欣
Chou, Pei-Hsin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 環境工程學系 Department of Environmental Engineering |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 中文 |
| 論文頁數: | 91 |
| 中文關鍵詞: | 生物試驗法 、內分泌干擾物質 、效果導向分析 、非目標分析 、河川 |
| 外文關鍵詞: | Yeast-based reporter gene assays, Endocrine disrupting chemicals, Effect-directed analysis, Non-target analysis, Gas chromatography mass spectrometry |
| 相關次數: | 點閱:127 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著工業活動爆炸式增長,越來越多的化學製品被製造出來,在為人類生活帶來便利的同時也為環境帶來污染。許多人為污染物具有內分泌干擾活性,這些物質會隨著人類活動而流入河川中,進而對水生生物生長與生殖產生不利之影響,也可能經由生物放大作用而對人類和動物的健康造成威脅。
為了了解臺灣南部河川中內分泌干擾物質之種類與分布,本研究以報導基因酵母菌試驗法檢測鹽水溪、二仁溪和阿公店溪水相與懸浮固相樣本之內分泌干擾活性,並透過效果導向分析,由具有明顯活性之樣本分離出有活性貢獻之集份 (Fraction),最後再結合非目標分析識別集份中之化合物。
內分泌干擾活性試驗結果表示,類芳香烴活性測得頻率最高,水相樣本之當量濃度範圍為18-437 ng β-Naphthoflavone equivalent (β-NF-EQ)/L,懸浮固相樣本當量濃度範圍為58-720 ng β-NF-EQ/L。所有樣本皆不具類雄激素活性,抗雄激素活性僅於濕季水相樣本中測得,當量濃度範圍為<69.1-319.4 µg Flutamide equivalent (FLU-EQ)/L。類甲狀腺激素活性僅於懸浮固相樣本中測得,當量濃度範圍為<32.5-281 ng Triiodothyronine equivalent (T3-EQ)/L,抗甲狀腺激素活性僅於水相樣本中測得,當量濃度範圍為<12.5-102 µg 3,5-Di-tert-butyl-4-hydroxybenzoic acid equivalent (BHT-COOH-EQ)/L。於效果導向分析中,在具抗甲狀腺激素活性樣本中辨識出Methyl 3-(3,5-di-tert-butyl-4-hydroxyphenyl)propionate、3,5-Di-tert-butyl-4-hydroxybenzyl alcohol和Fenozan,這些物質亦在內分泌干擾活性試驗中顯示出抗甲狀腺激素活性,在具抗雄激素活性樣本中亦辨識出具抗雄激素活性之雙酚A,其濃度高達201.1 µg/L。非目標分析中,在接近出海口樣本中辨識出酚類化合物、抗氧化劑、界面活性劑、雙酚化合物、咖啡因等物質。
Since the industrial revolution, the manufacture and processing of chemicals have improved the convenience of human life. Some of these substances have been found to be endocrine disrupting chemicals (EDCs), and are distributed into the environment via human activities. In this study, three recombinant yeast bioassays was used to detect aryl hydrocarbon receptor (AhR), androgen receptor (AR) and thyroid hormone receptor (TR) disrupting activities in river samples from Southern Taiwan. High performance liquid chromatography (HPLC) and gas chromatography mass spectrometry (GC-MS) were used to separate and analyze contaminants in significantly active samples and water samples close to sea outlets. The results showed that AhR agonist activity was detected most frequently. AR antagonist activity and TR antagonist activity were only detected in the water phase, and TR agonist activity was only detected in the suspended solids phase. Methyl 3-(3,5-di-tert-butyl-4-hydroxyphenyl)propionate , 3,5-di-tert-butyl-4-hydroxybenzyl alcohol and Fenozan were identified in samples showing TR antagonist activities. Bisphenol A was identified in samples showing AR antagonist activity, and the highest concentration was 201.1 µg/L. Diverse compounds were also found in the downriver samples, such as phenolic compounds, antioxidants, bisphenols, surfactants, and other substances.
1.Adolfsson‐Erici, M., Åkerman, G., & McLachlan, M. S. (2012). Measuring bioconcentration factors in fish using exposure to multiple chemicals and internal benchmarking to correct for growth dilution. Environmental Toxicology and Chemistry, 31(8), 1853-1860.
2.Balaguer, P., Delfosse, V., Grimaldi, M., & Bourguet, W. (2017). Structural and functional evidences for the interactions between nuclear hormone receptors and endocrine disruptors at low doses. Comptes Rendus Biologies, 340(9-10), 414-420.
3.Ballesteros-Gómez, A., & Rubio, S. (2011). Recent advances in environmental analysis. Analytical Chemistry, 83(12), 4579-4613.
4.Benfenati, E., Porazzi, E., & Pardo Martinez, M. (2004). Organic contaminants in leachates from industrial waste landfills. Series Anthropogenic Compounds, 71-97.
5.Bernal, J. (2005). Thyroid hormones and brain development. Vitamins & Hormones, 71, 95-122.
6.Bertram, M. G., Saaristo, M., Martin, J. M., Ecker, T. E., Michelangeli, M., Johnstone, C. P., & Wong, B. B. (2018). Field-realistic exposure to the androgenic endocrine disruptor 17β-trenbolone alters ecologically important behaviours in female fish across multiple contexts. Environmental Pollution, 243, 900-911.
7.Bigott-Hennkens, H., Dannoon, S., Lewis, M., & Jurisson, S. (2008). In vitro receptor binding assays: general methods and considerations. The Quarterly Journal of Nuclear Medicine and Molecular Imaging, 52(3), 245.
8.Biswas, S., Kranz, W. L., Shapiro, C. A., Snow, D. D., Bartelt-Hunt, S. L., Mamo, M., Tarkalson, D. D., Zhang, T. C., Shelton, D. P., & van Donk, S. J. (2017). Effect of rainfall timing and tillage on the transport of steroid hormones in runoff from manure amended row crop fields. Journal of Hazardous Materials, 324, 436-447.
9.Cariati, F., D’Uonno, N., Borrillo, F., Iervolino, S., Galdiero, G., & Tomaiuolo, R. (2019). Bisphenol a: an emerging threat to male fertility. Reproductive Biology and Endocrinology, 17(1), 1-8.
10.Carta, G., Murru, E., Banni, S., & Manca, C. (2017). Palmitic acid: physiological role, metabolism and nutritional implications. Frontiers in Physiology, 8, 902.
11.Chen, Y., Guo, Q., Zhu, Z., Zhang, L., & Dai, X. (2012). Comparative Analysis of the Essential Oil of Flowers, Leaves and Stems of Prunella vulgaris L. Journal of Essential Oil Bearing Plants, 15(4), 662-666.
12.Cheng, J.-O., Ko, F.-C., Lee, C.-L., & Fang, M.-D. (2013). Air–water exchange fluxes of polycyclic aromatic hydrocarbons in the tropical coast, Taiwan. Chemosphere, 90(10), 2614-2622.
13.Cockshott, I. D. (2004). Bicalutamide. Clinical Pharmacokinetics, 43(13), 855-878.
14.Connolly, L., Ropstad, E., & Verhaegen, S. (2011). In vitro bioassays for the study of endocrine-disrupting food additives and contaminants. TrAC Trends in Analytical Chemistry, 30(2), 227-238.
15.Conroy‐Ben, O., Garcia, I., & Teske, S. S. (2018). In silico binding of 4, 4'‐bisphenols predicts in vitro estrogenic and antiandrogenic activity. Environmental Toxicology, 33(5), 569-578.
16.Coskun, O. (2016). Separation techniques: chromatography. Northern Clinics of Istanbul, 3(2), 156.
17.Dalton, J. T., Mukherjee, A., Zhu, Z., Kirkovsky, L., & Miller, D. D. (1998). Discovery of nonsteroidal androgens. Biochemical and Biophysical Research Communications, 244(1), 1-4.
18.Denison, M. S., & Nagy, S. R. (2003). Activation of the aryl hydrocarbon receptor by structurally diverse exogenous and endogenous chemicals. Annual Review of Pharmacology and Toxicology, 43(1), 309-334.
19.Dodd, M., & Dodd, J. (1976). The biology of metamorphosis. Physiology of the Amphibia, 3, 467-599.
20.Durhan, E. J., Lambright, C. S., Makynen, E. A., Lazorchak, J., Hartig, P. C., Wilson, V. S., Gray, L. E., & Ankley, G. T. (2006). Identification of metabolites of trenbolone acetate in androgenic runoff from a beef feedlot. Environmental Health Perspectives, 114(Suppl 1), 65-68.
21.Eiceman, G., & Karasek, F. (1981). Identification of residual organic compounds in food packages. Journal of Chromatography A, 210(1), 93-103.
22.Erkekoglu, P., Kocer-Gumusel, B., Kizilgun, M., Hininger-Favier, I., Rachidi, W., Roussel, A.-M., Favier, A., & Hincal, F. (2012). Thyroidal effects of di-(2-ethylhexyl) phthalate in rats of different selenium status. Journal of Environmental Pathology, Toxicology and Oncology, 31(2).
23.Fetter, E., Krauss, M., Brion, F., Kah, O., Scholz, S., & Brack, W. (2014). Effect-directed analysis for estrogenic compounds in a fluvial sediment sample using transgenic cyp19a1b-GFP zebrafish embryos. Aquatic Toxicology, 154, 221-229.
24.Finehout, E. J., & Lee, K. H. (2004). An introduction to mass spectrometry applications in biological research. Biochemistry and molecular biology Education, 32(2), 93-100.
25.Formica, J., & Regelson, W. (1995). Review of the biology of quercetin and related bioflavonoids. Food and Chemical Toxicology, 33(12), 1061-1080.
26.Gan, H.-H., Soukoulis, C., & Fisk, I. (2014). Atmospheric pressure chemical ionisation mass spectrometry analysis linked with chemometrics for food classification–A case study: Geographical provenance and cultivar classification of monovarietal clarified apple juices. Food Chemistry, 146, 149-156.
27.Gandhimathi, M., Murugavel, K., & Ravi, T. (2014). Migration study of optical brighteners from polymer packing materials to jam squeeze and fruit drink by spectrofluorimetry and RP-HPLC methods. Journal of Food Science and Technology, 51(6), 1133-1139.
28.Gao, X., Huang, P., Huang, Q., Rao, K., Lu, Z., Xu, Y., Gabrielsen, G. W., Hallanger, I., Ma, M., & Wang, Z. (2019). Organophosphorus flame retardants and persistent, bioaccumulative, and toxic contaminants in Arctic seawaters: On-board passive sampling coupled with target and non-target analysis. Environmental Pollution, 253, 1-10.
29.Geissen, V., Mol, H., Klumpp, E., Umlauf, G., Nadal, M., Van der Ploeg, M., Van de Zee, S. E., & Ritsema, C. J. (2015). Emerging pollutants in the environment: a challenge for water resource management. International Soil and Water Conservation Research, 3(1), 57-65.
30.Glassmeyer, S. T., Furlong, E. T., Kolpin, D. W., Cahill, J. D., Zaugg, S. D., Werner, S. L., Meyer, M. T., & Kryak, D. D. (2005). Transport of chemical and microbial compounds from known wastewater discharges: potential for use as indicators of human fecal contamination. Environmental Science & Technology, 39(14), 5157-5169.
31.Gore, A. C., Chappell, V. A., Fenton, S. E., Flaws, J. A., Nadal, A., Prins, G. S., Toppari, J., & Zoeller, R. T. (2015). EDC-2: the Endocrine Society's second scientific statement on endocrine-disrupting chemicals. Endocrine Reviews, 36(6), E1-E150.
32.Guedez, A. A., & Püttmann, W. (2011). Occurrence and fate of TMDD in wastewater treatment plants in Germany. Water Research, 45(16), 5313-5322.
33.Gust, M., Buronfosse, T., Geffard, O., Mons, R., Queau, H., Mouthon, J., & Garric, J. (2010). In situ biomonitoring of freshwater quality using the New Zealand mudsnail Potamopyrgus antipodarum (Gray) exposed to waste water treatment plant (WWTP) effluent discharges. Water Research, 44(15), 4517-4528.
34.Hejmej, A., & Bilinska, B. (2018). The effects of flutamide on cell-cell junctions in the testis, epididymis, and prostate. Reproductive Toxicology, 81, 1-16.
35.Hertog, M. G., Hollman, P. C., & Katan, M. B. (1992). Content of potentially anticarcinogenic flavonoids of 28 vegetables and 9 fruits commonly consumed in the Netherlands. Journal of Agricultural and Food Chemistry, 40(12), 2379-2383.
36.Hopfgartner, G., Tonoli, D., & Varesio, E. (2012). High-resolution mass spectrometry for integrated qualitative and quantitative analysis of pharmaceuticals in biological matrices. Analytical and Bioanalytical Chemistry, 402(8), 2587-2596.
37.Jabbar, A., Pingitore, A., Pearce, S. H., Zaman, A., Iervasi, G., & Razvi, S. (2017). Thyroid hormones and cardiovascular disease. Nature Reviews Cardiology, 14(1), 39-55.
38.Kamely, M., Torshizi, M. A. K., & Rahimi, S. (2016). Blood biochemistry, thyroid hormones, and performance in broilers with ascites caused by caffeine. Poultry Science, 95(11), 2673-2678.
39.Khotimchenko, S., & Gusarova, I. (2004). Red algae of peter the great bay as a source of arachidonic and eicosapentaenoic acids. Russian Journal of Marine Biology, 30(3), 183-187.
40.Kiess, W., Häussler, G., & Vogel, M. (2021). Endocrine-disrupting chemicals and child health. Best Practice & Research Clinical Endocrinology & Metabolism, 35(5), 101516.
41.Kim, S. H., & Park, M. J. (2014). Phthalate exposure and childhood obesity. Annals of Pediatric Endocrinology & Metabolism, 19(2), 69.
42.Kotowska, U., Kapelewska, J., Kotowski, A., & Pietuszewska, E. (2019). Rapid and sensitive analysis of hormones and other emerging contaminants in groundwater using ultrasound-assisted emulsification microextraction with solidification of floating organic droplet followed by GC-MS Detection. Water, 11(8), 1638.
43.Labadie, P., & Budzinski, H. (2006). Alteration of steroid hormone balance in juvenile turbot (Psetta maxima) exposed to nonylphenol, bisphenol A, tetrabromodiphenyl ether 47, diallylphthalate, oil, and oil spiked with alkylphenols. Archives of Environmental Contamination and Toxicology, 50(4), 552-561.
44.Li, C., Huang, T., Bao, Y., Chen, Z., & Lin, G. (2021). NMR used to study the side-reactions between peroxides and antioxidants during the reactive extrusion process of the impact polypropylene. Magnetic Resonance Letters, 2(2), 91-106.
45.Liu, R., & Mabury, S. A. (2020). Novel high molecular weight synthetic phenolic antioxidants in indoor dust in Toronto, Canada. Environmental Science & Technology Letters, 7(1), 14-19.
46.Liu, R., & Mabury, S. A. (2020). Synthetic phenolic antioxidants: A review of environmental occurrence, fate, human exposure, and toxicity. Environmental Science & Technology, 54(19), 11706-11719.
47.Liu, R., & Mabury, S. A. (2021). Rat metabolism study suggests 3-(3, 5-Di-tert-butyl-4-hydroxyphenyl) propionic acid as a potential urinary biomarker of human exposure to representative 3-(3, 5-di-tert-butyl-4-hydroxyphenyl) propionate antioxidants. Environmental Science & Technology, 55(20), 14051-14058.
48.Liu, R., & Mabury, S. A. (2021). Single-use face masks as a potential source of synthetic antioxidants to the environment. Environmental Science & Technology Letters, 8(8), 651-655.
49.Luccio-Camelo, D. C., & Prins, G. S. (2011). Disruption of androgen receptor signaling in males by environmental chemicals. The Journal of Steroid Biochemistry and Molecular Biology, 127(1-2), 74-82.
50.Manna, D., Roy, G., & Mugesh, G. (2013). Antithyroid drugs and their analogues: synthesis, structure, and mechanism of action. Accounts of Chemical Research, 46(11), 2706-2715.
51.Matsumoto, K., Ochiai, T., Sekita, K., Uchida, O., Furuya, T., & KUROKAWA, Y. (1991). Chronic toxicity of 2, 4, 6-tri-tert-butylphenol in rats. The Journal of Toxicological Sciences, 16(4), 167-179.
52.McPherson, R. A., & Pincus, M. R. (2021). Henry's clinical diagnosis and management by laboratory methods E-book. Elsevier Health Sciences, (18th ed.), 1-1666.
53.Meeker, J. D., Calafat, A. M., & Hauser, R. (2007). Di (2-ethylhexyl) phthalate metabolites may alter thyroid hormone levels in men. Environmental Health Perspectives, 115(7), 1029-1034.
54.Meharg, A., Wright, J., & Osborn, D. (2000). Chlorobenzenes in rivers draining industrial catchments. Science of the Total Environment, 251, 243-253.
55.Meharg, A., Wright, J., & Osborn, D. (2000). Chlorobenzenes in rivers draining industrial catchments. Science of the Total Environment, 251, 243-253.
56.Meinert, C., & Brack, W. (2010). Optimisation of trapping parameters in preparative capillary gas chromatography for the application in effect-directed analysis. Chemosphere, 78(4), 416-422.
57.Miller III, C. A. (1999). A human aryl hydrocarbon receptor signaling pathway constructed in yeast displays additive responses to ligand mixtures. Toxicology and Applied Pharmacology, 160(3), 297-303.
58.Mimura, J., & Fujii-Kuriyama, Y. (2003). Functional role of AhR in the expression of toxic effects by TCDD. Biochimica et Biophysica Acta (BBA)-General Subjects, 1619(3), 263-268.
59.Mladenov, N., Dodder, N. G., Steinberg, L., Richardot, W., Johnson, J., Martincigh, B. S., Buckley, C., Lawrence, T., & Hoh, E. (2022). Persistence and removal of trace organic compounds in centralized and decentralized wastewater treatment systems. Chemosphere, 286, 131621.
60.Monneret, C. (2017). What is an endocrine disruptor? Comptes Rendus Biologies, 340(9-10), 403-405.
61.Mooradian, A. D., Morley, J. E., & Korenman, S. G. (1987). Biological actions of androgens. Endocrine Reviews, 8(1), 1-28.
62.Moriyama, K., Tagami, T., Akamizu, T., Usui, T., Saijo, M., Kanamoto, N., Hataya, Y., Shimatsu, A., Kuzuya, H., & Nakao, K. (2002). Thyroid Hormone Action Is Disrupted by Bisphenol A as an Antagonist. The Journal of Clinical Endocrinology & Metabolism, 87(11), 5185-5190.
63.Na, B.-R., Kim, H.-R., Kwon, M.-S., Lee, H.-S., Piragyte, I., Choi, E.-J., Choi, H.-K., Han, W.-C., Lee, S.-H., & Jun, C.-D. (2013). Aplotaxene blocks T cell activation by modulation of protein kinase C-θ-dependent pathway. Food and Chemical Toxicology, 62, 23-31.
64.Nemoto, S., Omura, M., Takatsuki, S., Sasaki, K., & Toyoda, M. (2001). Determination of 2, 4, 6-tri-tert-butylphenol and related compounds in foods. Shokuhin Eiseigaku zasshi. Journal of the Food Hygienic Society of Japan, 42(6), 359-366.
65.Ojanperä, I., Kolmonen, M., & Pelander, A. (2012). Current use of high-resolution mass spectrometry in drug screening relevant to clinical and forensic toxicology and doping control. Analytical and Bioanalytical Chemistry, 403(5), 1203-1220.
66.Osimitz, T. G., Welsh, W. J., Ai, N., & Toole, C. (2015). Polyester monomers lack ability to bind and activate both androgenic and estrogenic receptors as determined by In Vitro and In Silico methods. Food and Chemical Toxicology, 75, 128-138.
67.Paris, A., Ledauphin, J., Poinot, P., & Gaillard, J.-L. (2018). Polycyclic aromatic hydrocarbons in fruits and vegetables: Origin, analysis, and occurrence. Environmental Pollution, 234, 96-106.
68.Paris, A., Ledauphin, J., Poinot, P., & Gaillard, J.-L. (2018). Polycyclic aromatic hydrocarbons in fruits and vegetables: Origin, analysis, and occurrence. Environmental Pollution, 234, 96-106.
69.Paustenbach, D. J., Winans, B., Novick, R. M., & Green, S. M. (2015). The toxicity of crude 4-methylcyclohexanemethanol (MCHM): review of experimental data and results of predictive models for its constituents and a putative metabolite. Critical Reviews in Toxicology, 45(sup2), 1-55.
70.Plahuta, M., Tišler, T., Toman, M. J., & Pintar, A. (2017). Toxic and endocrine disrupting effects of wastewater treatment plant influents and effluents on a freshwater isopod Asellus aquaticus (Isopoda, Crustacea). Chemosphere, 174, 342-353.
71.Pupinyo, N., D’Costa, C., Heiskanen, A., Laiwattanapaisal, W., & Emnéus, J. (2022). Impedance-Based E-Screen Cell Biosensor for the Real-Time Screening of Xenoestrogenic Compounds. ACS ES&T Water, 2(3), 446-456.
72.Rastogi, S. C. (1991). Levels of organic solvents in printer's inks. Archives of Environmental Contamination and Toxicology, 20(4), 543-547.
73.Richter, W. J., & Schwarz, H. (1978). Chemical Ionization—A Mass‐Spectrometric Analytical Procedure of Rapidly Increasing Importance. Angewandte Chemie International Edition in English, 17(6), 424-439.
74.Robitaille, J., Denslow, N. D., Escher, B. I., Kurita-Oyamada, H. G., Marlatt, V., Martyniuk, C. J., Navarro-Martín, L., Prosser, R., Sanderson, T., & Yargeau, V. (2022). Towards regulation of Endocrine Disrupting chemicals (EDCs) in water resources using bioassays–A guide to developing a testing strategy. Environmental Research, 205, 112483.
75.Ruth, K. S., Day, F. R., Tyrrell, J., Thompson, D. J., Wood, A. R., Mahajan, A., Beaumont, R. N., Wittemans, L., Martin, S., & Busch, A. S. (2020). Using human genetics to understand the disease impacts of testosterone in men and women. Nature Medicine, 26(2), 252-258.
76.Samuels, H. H., Tsai, J. S., Casanova, J., & Stanley, F. (1974). Thyroid hormone action in vitro characterization of solubilized nuclear receptors from rat liver and cultured GH 1 cells. The Journal of Clinical Investigation, 54(4), 853-865.
77.Schiffer, B., Daxenberger, A., Meyer, K., & Meyer, H. (2001). The fate of trenbolone acetate and melengestrol acetate after application as growth promoters in cattle: environmental studies. Environmental Health Perspectives, 109(11), 1145-1151.
78.Schummer, C., Delhomme, O., Appenzeller, B. M., Wennig, R., & Millet, M. (2009). Comparison of MTBSTFA and BSTFA in derivatization reactions of polar compounds prior to GC/MS analysis. Talanta, 77(4), 1473-1482.
79.Serra, H., Beausoleil, C., Habert, R., Minier, C., Picard-Hagen, N., & Michel, C. (2019). Evidence for bisphenol B endocrine properties: scientific and regulatory perspectives. Environmental Health Perspectives, 127(10), 106001.
80.Shiizaki, K., Asai, S., Ebata, S., Kawanishi, M., & Yagi, T. (2010). Establishment of yeast reporter assay systems to detect ligands of thyroid hormone receptors α and β. Toxicology in Vitro, 24(2), 638-644.
81.Shinde, R., & McGaha, T. L. (2018). The aryl hydrocarbon receptor: connecting immunity to the microenvironment. Trends in Immunology, 39(12), 1005-1020.
82.Simpson, E. R., Mahendroo, M. S., Means, G. D., Kilgore, M. W., Hinshelwood, M. M., Graham-Lorence, S., Amarneh, B., Ito, Y., Fisher, C. R., & Michael, M. D. (1994). Aromatase cytochrome P450, the enzyme responsible for estrogen biosynthesis. Endocrine Reviews, 15(3), 342-355.
83.Sohoni, P., Tyler, C., Hurd, K., Caunter, J., Hetheridge, M., Williams, T., Woods, C., Evans, M., Toy, R., & Gargas, M. (2001). Reproductive effects of long-term exposure to bisphenol A in the fathead minnow (Pimephales promelas). Environmental Science & Technology, 35(14), 2917-2925.
84.Sonavane, M., Schollée, J. E., Hidasi, A. O., Creusot, N., Brion, F., Suter, M. J. F., Hollender, J., & Aїt‐Aїssa, S. (2018). An integrative approach combining passive sampling, bioassays, and effect‐directed analysis to assess the impact of wastewater effluent. Environmental Toxicology and Chemistry, 37(8), 2079-2088.
85.Szelei, J., Jimenez, J., Soto, A. M., Luizzi, M. F., & Sonnenschein, C. (1997). Androgen-induced inhibition of proliferation in human breast cancer MCF7 cells transfected with androgen receptor. Endocrinology, 138(4), 1406-1412.
86.Terasaki, M., Nomachi, M., Edmonds, J. S., & Morita, M. (2004). Impurities in industrial grade 4, 4′-isopropylidene diphenol (bisphenol A): Possible implications for estrogenic activity. Chemosphere, 55(6), 927-931.
87.Tian, Z., Peter, K. T., Gipe, A. D., Zhao, H., Hou, F., Wark, D. A., Khangaonkar, T., Kolodziej, E. P., & James, C. A. (2019). Suspect and nontarget screening for contaminants of emerging concern in an urban estuary. Environmental Science & Technology, 54(2), 889-901.
88.Tyagi, V., Scordo, M., Yoon, R. S., Liporace, F. A., & Greene, L. W. (2017). Revisiting the role of testosterone: Are we missing something? Reviews in Urology, 19(1), 16-24.
89.Ullah, A., Pirzada, M., Jahan, S., Ullah, H., Turi, N., Ullah, W., Siddiqui, M. F., Zakria, M., Lodhi, K. Z., & Khan, M. M. (2018). Impact of low-dose chronic exposure to bisphenol A and its analogue bisphenol B, bisphenol F and bisphenol S on hypothalamo-pituitary-testicular activities in adult rats: A focus on the possible hormonal mode of action. Food and Chemical Toxicology, 121, 24-36.
90.Vincze, K., Gehring, M., & Braunbeck, T. (2014). (Eco) toxicological effects of 2, 4, 7, 9-tetramethyl-5-decyne-4, 7-diol (TMDD) in zebrafish (Danio rerio) and permanent fish cell cultures. Environmental Science and Pollution Research, 21(13), 8233-8241.
91.Wang, Q., Zhu, L., Chen, M., Ma, X., Wang, X., & Xia, J. (2017). Simultaneously determination of bisphenol A and its alternatives in sediment by ultrasound-assisted and solid phase extractions followed by derivatization using GC-MS. Chemosphere, 169, 709-715.
92.Wu, M.-T., Wu, C.-F., Chen, B.-H., Chen, E. K., Chen, Y.-L., Shiea, J., Lee, W.-T., Chao, M.-C., & Wu, J.-R. (2013). Intake of phthalate-tainted foods alters thyroid functions in Taiwanese children. PloS ONE, 8(1), e55005.
93.Yang, Q., Zhu, Z., Liu, Q., & Chen, L. (2021). Adverse effects of bisphenol B exposure on the thyroid and nervous system in early life stages of zebrafish. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 250, 109167.
94.Yang, X., Liu, H., Yang, Q., Liu, J., Chen, J., & Shi, L. (2016). Predicting anti-androgenic activity of bisphenols using molecular docking and quantitative structure-activity relationships. Chemosphere, 163, 373-381.
95.Zacharewski, T. (1997). In vitro bioassays for assessing estrogenic substances. Environmental Science & Technology, 31(3), 613-623.
96.Zha, J., & Wang, Z. (2006). Acute and early life stage toxicity of industrial effluent on Japanese medaka (Oryzias latipes). Science of the Total Environment, 357(1-3), 112-119.
97.Zhang, Y., Liu, J. J., Zhang, L., & Wang, X. Z. (2015). Solubility of 2, 5-Di-tert-butylhydroquinone and process design for its purification using crystallization. Journal of Chemical & Engineering Data, 60(7), 1968-1974.
98.U.S. Environmental Protection Agency. Available online at http://www.epa.gov/oppt/existingchemicals/pubs/workplans.html (accessed on January 21, 2022).
99.FDA (U.S. Food and Drug Administration). 2018. Title 21 Code of Federal Regulations (CFR) Part 175, Subpart C: Substances for Use as Components of Coatings. https://www.accessdata.fda.gov/scripts/fdcc/index.cfmset=IndirectAdditives&id=BISPHENOLB (accessed on May 10, 2022).
100.經濟部水利署. (2022). 中央管河川.
101.經濟部水利署. (2022). 水文資訊網流域情資.
102.臺南市環保局. (2022). 河川水質監測及水域生態調查.
103.行政院環保署. (2015). 「鹽水溪、急水溪污染整治計畫督導及協調會」第14 次會議資料.
104.行政院環保署. (2015). 「二仁溪污染整治小組及再生願景聯繫會報」第26次會議資料.
105.行政院環保署. (2015). 「阿公店溪及愛河水環境優化願景聯繫會報」第1次會議資料.
106.高雄市環保局. (2022). 土壤及水污染防治科-河川簡介及污染現況.
107.環檢所 - 河川、湖泊及水庫水質採樣方法, NIEA W104.52C.
108.黃琪文. (2020). 臺灣南部河川與底泥中內分泌干擾活性及有機磷阻燃劑之檢測. 成功大學環境工程學系碩士學位論文, 1-78.
109.內政部營建署. (2021). 109年度污水下水道統計要覽.
校內:2027-08-29公開