| 研究生: |
冼白文 Muhammad Fito Bayubaskara |
|---|---|
| 論文名稱: |
研究印度梨型孢真菌之揮發性化合物促進阿拉伯芥生長之分子途徑 Corroborate the molecular pathway in Arabidopsis growth promotion mediated by Piriformospora indica volatile compounds |
| 指導教授: |
詹明才
Chan, Ming-Tsair |
| 共同指導教授: |
邱啟洲
Chiu, Chi-Chou |
| 學位類別: |
碩士 Master |
| 系所名稱: |
生物科學與科技學院 - 熱帶植物與微生物科學研究所 Institute of Tropical Plant Sciences |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 英文 |
| 論文頁數: | 56 |
| 外文關鍵詞: | Serendipita, rich medium, organic constituents, iron-deficiency genes, nitric oxide genes |
| 相關次數: | 點閱:64 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
Utilization of beneficial microorganism will overcome food shortage issue by enhancing crop productivity as well as conserving environmental balance. The fungus Piriformospora indica is a beneficial root-colonizing microorganism that can promote plant resistance and growth by producing diffusible and/or volatile organic compounds (VOCs). However, the underlying associated molecular pathway(s) remain obscure. Moreover, different cultures may affect the fungus growth and VOC production. In this study, we aimed to establish culture medium condition for promote the best of plant growth mediated by P. indica VOCs and elucidate the associated molecular pathway(s). We found that P. indica grown on potato dextrose agar (PDA) medium has a prominent effect on plant growth promotion after 10 days of co-cultivation compared to Kafer medium (KF) and poor nutrient medium (PNM). Dry weight and root length of treated plants were doubled in comparison with untreated plants. Additionally, sucrose inhibition was also observed in VOC-mediated growth promotion. VOC-treated plants grown on PNM had up to a 4.37-fold rise compared to those grown on ½ MS with 2.91-fold rise indicating growth retardation on limited-nutrient plant. To analyse the possible molecular pathway, we found that P. indica VOCs could phosphorylate MAPK6 as early as 5 minutes after exposure. Intriguingly, IRT1 and FRO2 genes were suppressed after 7 days while NIA1 and GLB1 were induced after 5 days of co-cultivation, contradicting previous reports on VOC-mediated growth and might act downstream of MAPK6 showed by unaltered expression in the mapk6 mutant background. Taken together, our results demonstrated that fungus cultured on rich medium exhibited a tremendous effect on nutrient-limited plants that the medium-dependent generated signals may triggered MAPK6 phosphorylation to induce several downstream responses.
Ahmad, M., L. Pataczek, T. H. Hilger, Z. A. Zahir, A. Hussain, F. Rasche, R. Schafleitner, S. Ø. Solberg. 2018. Perspectives of microbial inoculation for sustainable development and environmental management. Front. Microbiol. 9: 2992.
Asari, S., S. Matzén, M. A. Petersen, S. Bejai, J. Meijer. 2016. Multiple effects of Bacillus amyloliquefaciens volatile compounds: plant growth promotion and growth inihibition of phytopathogens. FEMS Microbiology Ecology 92(6): fiw070.
Attri, M. K., A. Varma. 2018. Comparative study of growth of Piriformospora indica by using different sources of jaggery. Journal of Pure and Applied Microbiology 12(2): 933-942.
Camarena-Pozos, D. A., V. M. Flores-Núnez, M. G. López, J. López-Bucio, L. P. Partida-Martínez. 2019. Smells from the desert: Microbial volatiles that affect plant growth and development of native and non-native plant species. Plant Cell Environ. 42: 1368-1380.
Camarena-Pozos, D. A., V. M. Flores-Núnez, M. G. López, L. P. Partida-Martínez. 2021. Fungal volatiles emitted by members of the microbiome of desert plants are diverse and capable of promoting plant growth. Environmental Microbiology 23(4): 2215-2229.
Contreras-Cornejo, H. A., J. S. López-Bucio, A. Méndez-Bravo, L. Macías-Rodríguez, M. Ramos-Vega, A. A. Guevara-García, J. López-Bucio. 2015. Mitogen-activated protein kinase 6 and ethylene and auxin signaling pathways are involved in Arabidopsis root-system architecture alterations by Trichoderma atroviride. MPMI 28(6): 701-710.
Curie, C., J. Briat. 2003. Iron transport and signaling in plants. Annu. Rev. Plant Biol. 54: 183-206.
Daneshkhah, R., F. M. W. Grundler, K. Wieczorek. 2018. The role of MPK6 as mediator of ethylene/jasmonic acid signaling in Serendipita indica-colonized Arabidopsis roots. Plant Mol. Biol. Report 36(2): 284-294.
Dombrowski, J. E., R. C. Martin. 2018. Activation of MAP kinase by green leaf volatiles in grasses. BMC Res. Notes 11: 79.
Eide, D., M. Broderius, J. Fett, M. L. Guerinot. 1996. A novel iron-regulated metal transporter from plants identified by functional expression in yeast. Proc Natl. Acad. Sci. 93: 5624-5628.
Esparza-Reynoso, S., L. F. Ruíz-Herrera, R. Pelagio-Flores, L. I. Marcías-Rodríguez, M. Martínez-Trujillo, M. López-Coria, S. Sánchez-Nieto, A. Herrera-Estrella, J. López-Bucio. 2021. Trichoderma atroviride-emitted volatiles improve growth of Arabidopsis seedlings through modulation of sucrose transport and metabolism. Plant Cell Environ. 44: 1961-1976.
Fan, S. K., X. Z. Fang, M. Y. Guan, Y. Q. Ye, X. Y. Lin, S. T. Du, C. W. Jin. 2014. Exogenous abscisic acid application decreases cadmium accumulation in Arabidopsis plants, which is associated with the inhibition of IRT1-mediated cadmium uptake. Frontiers in Plant Science 5: 721.
Fincheira, P., A. Quiroz, G. Tortella, M. C. Diez, O. Rubilar. 2021. Current advances in plant-microbe communication via volatile organic compounds as an innovative strategy to improve plant growth. Microbiological Research 247: 126726
Fincheira, P., A. Quiroz. 2018. Microbial volatiles as plant growth inducers. Microbiological Research 208: 63-75.
García, M. J., C. Lucena, F. J. Romera, E. Alcántara, R. Pérez-Vicente. 2010. Ethylene and nitric oxide involvement in the up-regulation of key genes related to iron acquisition and homeostasis in Arabidopsis. Journal of Experimental Botany 61(14): 3885-3899.
Garnica-Vegara, A., S. Barrera-Ortiz, E. Munoz-Parra, J. Raya-González, A. Méndez-Bravo, L. Marcías-Rodríguez, L. F. Ruiz-Herrera, J. López-Bucio. 2016. The volatile 6-penthyl-2H-pyran-2-one from Trichoderma atroviride regulates Arabidopsis thaliana root morphogenesis via auxin signaling and ethylene insensitive 2 functioning. 2016. New Phytologist 209: 1496-1512.
Hacquard, S., B. Kracher, K. Hiruna, P. C. Mūnch, R. Garrido-Oter, M. R. Thon, A. Weimann, U. Damm, J. F. Dallery, M. Hainaut, et al. 2017. Survival trade-offs in plant roots during colonization by closely related beneficial and pathogenic fungi. Nature Communications 7: 11362
Hänsch, R., R. R. Mendel. 2009. Physiological functions of mineral micronutrients (Cu, Zn, Mn, Fe, Ni, Mo, B, Cl). Current Opinion in Plant Biology 12(3): 259-266.
Hebelstrup, K. H., P. Hunt, E. Dennis, S. B. Jensen, E. Ø. Jensen. 2006. Hemoglobin is essential for normal growth of Arabidopsis organs. Physiologia Plantarum 127: 157-166.
Herlihy, J. H., T. A. Long, J. M. McDowell. 2020. Iron homeostasis and plant immune response: Recent insights and translational implications. J. Biol. Chem. 295(39): 13444-13457.
Hiruma, K., N. Gerlach, S. Sacristán. R. T. Nakano. S. Hacquard, B. Kracher, U. Neumann, D. Ramírez, M. Bucher, R. J. O’Connell, et al. 2016. Root endophyte Colletorichum tofieldiae confers plant fitness benefits that are phosphate status dependent. Cell 165: 464-474.
Hoa, H. T., C. L. Wang. 2015. The effects of temperature and nutritional conditions on mycelium growth of two oyster mushrooms (Pleurotus ostreatus and Pleurotus cystidiosus). Mycobiology 43(1): 14-23.
Hung, R., S. Lee, J. W. Bennett. 2015. Fungal volatile organic compounds and their role in ecosystems. Appli. Microbiol. Biotechnol. 99: 3395-3405.
Inaji, A., A. Okazawa, T. Taguchi, M. Nakamoto, N. Katsuyama, R. Yoshikawa, T. Ohnishi, F. Waller, D. Ohta. 2020. Rhizotaxis modulation in Arabidopsis is induced by diffusible compounds produced during the cocultivation of Arabidopsis and the endophytic fungus Serendipita indica. Plant Cell Physiol. 61(4): 838-850.
Islam, M. R., G. Tudryn, R. Bucinell, L. Schadler, R. C. Picu. 2017. Morphology and mechanics of fungal mycelium. Scientific Reports 7: 13070.
Jiang, L., M. H. Lee, C. Y. Kim, S. W. Kim, P. I. Kim, S. R. Min, J. Lee. 2021. Plant growth promotion by two volatile organic compounds emitted from the fungus Cladosporium halotolerasn NGF1. Front. Plant Sci. 12: 794349.
Jo, E. A., R. K. Tewari, E. J. Hahn, K. Y. Paek. 2009. In vitro sucrose concentration affects and acclimatization of Alocasia amazonica plantlets. Plant Cell Tiss. Organ Cult. 96: 307-315.
Jogawat, A., M. K. Meena, A. Kundu, M. Varma, J. Vadassery. 2020. Calcium channel CNGC10 mediates basal defense signaling to regulate colonization by Piriformospora indica in Arabidopsis roots. Journal of Experimental Botany 71(9): 2752-2768.
Johnson, J. M., I. Sherameti, A. Ludwig, P. L. Nongbri, C. Sun, B. Lou, A. Varma, R. Oelmūller. 2011. Protocols for Arabidopsis thaliana and Piriformospora indica co-cultivation – A model system to study plant beneficial traits. Journal of Endocytosis and Cell Research 21: 101-113.
Kanchiswamy, C. N., M. Malnoy, M. E. Maffei. 2015. Chemical diversity of microbial volatiles and their potential for plant growth and productivity. Front. Plant Sci. 6: 151.
Kong, W. L., Y. H. Wang, X. Q. Wu. 2021. Enhanced iron uptake in plants by volatile emissions of Rahnella aquatilis JZ-GX1. Front. Plant Sci. 12:704000.
Küntzel, A., S. Fischer, A. Bergmann, P. Oertel, M. Steffens, P. Trefz, W. Miekisch, J. K. Schubert, P. Reinhold, H. Köhler. 2016. Effects of biological and methodological factors on volatile organic compounds patterns during cultural growth of Mycobacterium avium ssp. paratuberculosis. J. Breath Res. 10(3): 037103
Lastdrager. J., J. Hanson, S. Smeekens. 2014. Sugar signals and the control of plant growth and development. Journal of Experimental Botany 65(3): 799-807.
Lee, S., G. Behringer, R. Hung, J. Bennett. 2019. Effects of fungal volatile organic compounds on Arabidopsis thaliana growth and gene expression. Fungal Ecology 37: 1-9
Lee, S., M. Yap, G. Behringer, R. Hung, J. W. Bennett. 2016. Volatile organic compounds emitted by Trichoderma species mediate plant growth. Fungal Biol. Biotechnol. 3(7): 1-14
Li, J., X. Cao, X. Jia, L. Liu, H. Cao, W. Qin, M. Li. 2021. Iron deficiency leads to chlorosis through impacting chlorophyll synthesis and nitrogen metabolism in Areca catechu L. Fron. Plant Sci. 12: 710093.
Liu, X. X., X. L. He, C. W. Jin. 2016. Roles of chemical signals in regulation of the adaptive responses to iron deficiency. Plant Signaling & Behavior 11(5): e1179418.
López-Bucio, J. S., J. G. Dubrovsky, J. Raya-González, Y. Ugartechea-Chirino, J. López-Bucio, L. A. de Luna-Valdez, M. Ramos-Vega, P. León, A. A. Guevara-García. 2014. Arabidopsis thaliana mitogen-activated protein kinase 6 is involved in seed formation and modulation of primary and lateral root development. Journal of Experimental Botany 65(1): 169-183.
López-Millán, A. H., M. A. Grusak, A. Abadía, J. Abadía. 2013. Iron deficiency in plants: an insight from proteomic approaches. Front. Plant Sci. 4: 254.
Martínez-Medina, A. S. C. M. V. Wees, C. M. J. Pieterse. 2017. Airborne signals from Trichoderma fungi stimulate iron uptake responses in roots resulting in priming of jasmonic acid-dependent defences in shoots of Arabidopsis thaliana and Solanum lycopersicum. Plant, Cell and Environment 40: 2691-2705.
Martínez-Medina, A., S. C. M. V. Wees, C. M. J. Pieterse. 2017. Airborne signals from Trichoderma fungi stimulate iron uptake response in roots resulting in priming of jasmonic acid-dependent defences in shoots of Arabidopsis thaliana and Solanum lycopersicum. Plant, Cell, and Environment 40: 2691-2705.
Maurer, F., S. Müller, P. Bauer. 2011. Suppression of Fe deficiency gene expression by jasmonate Plant Physiology and Biochemistry 49(5): 530-536.
Minerdi, D., V. Maggini, R. Fani. 2021. Volatile organic compounds: from figurants to leading actors in fungal symbiosis. FEMS Microbiology Ecology 97(5): 1-12.
Moisan, K., J. M. Raajimakers, M. Dicke, D. Lucas-Barbosa, V. Cordovez. 2020. Volatiles from soil-borne fungi affect directional growth of roots. Plant Cell Environ.: 1-7.
Mosaddeghi, M. R., M. R. Sabzalian, M. A. Hajabbasi. 2021. Epichloë spp. and Serendipita indica endophytic fungi: Functions in plant-soil relations. Advances in Agronomy 165: 59-113.
Motte, H., T. Beeckman. 2017. PHR1 balances between nutrition and immunity in plants. Developmental Cell 41: 5-6.
Moustafa, K., S. A. Qamar, M. Jarrar, A. J. Al-Rajab, J. Trémouillaux-Guiller. 2014. MAPK cascades and major abiotic stresses. Plant Cell Rep. 33: 1217-1225.
Nasim, G., S. H. Malik, R. Bajwa, M. Afzal, S. W. Mian. 2001. Effect of three different culture media on mycelial growth of oyster and Chinese muhsrooms. OnLine Journal of Biological Sciences 1(12): 1130-1133.
Nühse, T. S., S. C. Peck, H. Hirt, T. Boller. 2000. Microbial elicitor induce activation and dual phosphorylation of the Arabidopsis thaliana MAPK 6. The Journal of Biological Chemistry 276(11): 7521-7526.
Nyenje, P. M., J. W. Foppen, S. Uhlenbrook, R. Kulabako, A. Muwanga. 2010. Eutrophication and nutrient release in urban areas of sub-Saharan Africa. Science of The Total Environment 408(3): 447-455.
Park, B. S., J. T. Song, H. S. Seo, 2011. Arabidopsis nitrate reductase activity is stimulated by the E3 SUMO ligase AtSIZ1. Nature Communications 2(1): 1-10.
Pescador, L., I. Fernandez, M. J. Pozo, M. C. Romero-Puertas, C. M. J. Pieterse, A. Martínez-Medina. 2021. Nitric oxide signalling in roots is required for MYB72-dependent systemic resistance induced by Trichoderma volatile compounds in Arabidopsis. Journal of Experimental Botany 73(2): 584-595.
Rabalais, N. N., R. E. Turner, R. J. Diaz, D. Justić. 2009. Global change and eutrophication of coastal waters. ICES Journal of Marine Science 66(7): 1528-1537.
Rahman, M. A., A. H. Kabir, Y. Song, S. Lee, M. Hasanuzzaman, K. Lee. 2021. Nitric oxide prevents Fe deficiency-induced photosynthetic disturbance, and oxidative stress in alfalfa by regulating Fe acquisition and antioxidant defense. Antioxidants 10: 1556.
Riaz, N., M. L. Guerinot. 2021. All together now: regulation of the iron deficiency response. Journal of Experimental Botany 72(6): 2045-2055.
Robinson, N. J., C. M. Procter, E. L. Connolly, M. L. Guerinot. A ferric-chelate reductase for iron uptake from soils. Nature 397: 694-697.
Ryu, C., M. A. Farag, C. Hu, M. S. Reddy, H. Wei, P. W. Paré, J. W. Kloepper. 2003. Bacterial volatiles promote growth in Arabidopsis. PNAS 100(14): 4927-4932.
Savci, S. 2012. Investigation of effect of chemical fertilizers on environment. APCBEE Procedia 1: 287-292.
Schenkel, D., J. G. Maciá-Vicente, A. Bissell, R. Splivallo. 2018. Fungi indirectly affect plant root architecture by modulationg soil volatile organic compounds. Front. Microbiol. 9: 1847.
Séguéla, M., J. F. Briat, G. Vert, C. Curie. 2008. Cytokinin negatively regulate the root iron uptake machinery in Arabidopsis through a growth-dependent pathway. The Plant Journal 55: 289-300.
Sharifi, R., C. Ryu. 2018. Revisiting bacterial volatile-mediated plant growth promotion: lessons from the past and objectives for the future. Annals of Botany 122: 349-358.
Sharifi, R., J. Jeon, C. Ryu. 2021. Belowground plant-microbe communications via volatile compounds. Journal of Experimental Botany 73(2): 463-486.
Singh, G., P. Sharma, S. Sharma. 2016. Role of growth media on the phytopromotional potential of symbiotic fungus Piriformospora indica. Journal of Environmental Biology 37: 889-894.
Singh, S., S. Kailasam, J. C. Lo, K. C. Yeh. 2021. Histone H3 lysine4 trimethylation-regulated GRF11 expression is essential for the iron-deficiency response in Arabidopsis thaliana. New Phytologist 230: 244-258.
Smékalová, V., A. Doskočilová, G. Komis, J. Šamaj. 2014. Crosstalk between secondary messengers, hormones, and MAPK modules during osmotic stress signalling in plants. Biotechnology Advances 32: 2-11.
Song, G. C., J. S. Jeon, H. J. Sim, S. Lee, J. Jung, S. G. Kim, S. Y. Moon, C. M. Ryu. 2021. Dual-functionality of natural mixtures of bacterial volatile compounds on plant growth. Journal of Experimental Botany 73(2): 571-583.
Sudbery, P., H. Court. 2007. Biology of the fungal cell. 2nd Ed. Heidelberg: Springer-Verlag Berlin Heidelberg
Sun, B., Y. Jing, K. Chen, L. Song, F. Chen, L. Zhang. 2007. Protective effect of nitric oxide on iron deficiency-induced oxidative stress in maize (Zea mays). Journal of Plant Physiology 164: 536-543.
Takei, K., T. Yamaya, H. Sakakibara. 2004. Arabidopsis CYP735A1 and CYP735A2 encode cytokinin hydroxylases that catalyze the biosynthesis of trans-zeatin. J. Biol. Chem. 279(40): 41866-72.
Vadassery, J., S. Ranf, C. Drzewiecki, A. Mithöfer, C. Mazars, D. Scheel, J. Lee, R. Oelmūller. 2009. A cell wall extract from the endophytic fungus Piriformospora indica promotes growth of Arabidopsis seedlings and induces intracellular calcium elevation in roots. The Plant Journal 59: 193-206.
Varma, A., et al. 2012b. Fungal Associations. 2nd Ed. Heidelberg: Springer-Verlag.
Varma, A., M. Bakshi, B. Lou, A. Hartmann, R. Oelmūller. 2012a. Piriformospora indica: a novel plant growth-promoting mycorrhizal fungus. Agric. Res. 1(2): 117-131.
Venneman, J., L. Vandermeersch, C. Walgraeve, K. Audenaert, M. Ameye, J. Verwaeren, K. Steppe, H. V. Langenhove, G. Haesaert, D. Vereecke. 2020. Respiratory CO2 combined with a blend of volatiles emitted by endophytic Serendipita strains strongly stimulate growth of Arabidopsis implicating auxin and cytokinin signaling. Front. Plant Sci. 11: 544435.
Verma, S., A. Varma, K. H. Rexer, A. Hassel, G. Kost, A. Sarbhov, P. Bisen, B. Büttehorn, P. Franken. 1998. Piriformospora indica, gen. et sp. Nov., a new root-colonizing fungus. Mycologia 90(5): 896-903.
Wang, P., Y. Du, Y. Li, D. Ren, C. Song. 2010. Hydrogen peroxide-mediated activation of MAP Kinase modulates nitric oxide biosynthesis and signal transduction in Arabidopsis. The Plant Cell 22: 2981-2998.
Wang, P., Y. Du, Y. Li, D. Ren, C. Song. 2010. Hydrogen peroxide-mediated activation of MAP kinase 6 modulates nitric oxide biosynthesis and signal transduction in Arabidopsis. The Plant Cell 22: 2981-2998.
Weiß, M., F. Waller, A. Zuccaro, M. Selosse. 2016. Sebacinales-one thousand and one interactions with land plants. New Phytologist 211: 20-40.
Weisskopf, L., S. Schulz, P. Garbeva. 2021. Microbial volatile organic compounds in intra-kingdom and inter-kingdom interactions. Nat. Rev. Microbiol. 19: 391-404.
Wintermans, J. F., A. Mots. 1965. Spectrophotometric characteristics of chlorophylls a and b and their pheophytins in ethanol. Biochim. Biophys. Acta 109(2): 448-453.
Wong, W. S., S. N. Tan, L. Ge, X. Chen, J. W. H. Yong. 2015. The importance of phytohormones and microbes in biofertilizer. Switzerland: Springer International Publishing.
Wonglom, P., S. Ito, A. Sunpapao. 2020. Volatile organic compounds emitted from endophytic fungus Trichoderma asperellum T1 mediate antifungal activity, defense response, and promote plant growth in lettuce (Lactuca sativa). Fungal Ecology 43: 100867.
Yang, J. L., W. W. Chen, L. Q. Chen, C. Qin, C. W. Jin, Y. Z. Shi, S. J. Zheng. 2013. The 14-3-3 protein GENERAL REGULATORY FACTOR11 (GRF11) acts downstream of nitric oxide to regulate iron acquisition in Arabidopsis thaliana. New Phytologist 197: 815-824.
Ye, L., L. Li, L. Wang, S. Wang, S. Li, J. Du, S. Zhang, H. Shou. 2015. MAPK3/MAPK6 are involved in iron deficiency-induced ethylene production in Arabidopsis. Front. Plant. Sci. 6: 953
Zamioudis, C., J. Korteland, J. A. V. Pelt, M. Hamersveld, N. Dombrowski, Y. Bai, J. Hanson, M. C. V. Verk, H. Ling, P. Schulze-Lefert, C. M. J. Pieterse. 2015. Rhizobacterial volatiles and photosynthesis-related signals coordinate MYB72 expression in Arabidopsis roots during onset of induced systemic resistance and iron-deficiency responses.
Zareian, M., P. Silcock, P. Bremer. 2017. Effect of medium compositions on microbially mediated volatile organic compounds release profile. Journal of Applied Microbiology 125: 813-827.
Zhang, H., Y. Sun, X. Xie, M. Kim, S. E. Dowd, P. W. Paré. 2009. A soil bacterium regulates plant acquisition of iron via deficiency-inducible mechanisms. The Plant Journal 58: 568-577.