| 研究生: |
李安哲 Li, An-Che |
|---|---|
| 論文名稱: |
銅-苯醌配位聚合物作為鋰離子電池之陰極材料 Copper-benzoquinoid Coordination Polymers as Cathode Materials for Lithium-ion Batteries |
| 指導教授: |
柯碧蓮
Watchareeya Kaveevivitchai |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 英文 |
| 論文頁數: | 87 |
| 中文關鍵詞: | 鋰離子電池 、一維配位高分子 、陰極材料 、電荷轉移 、大型儲能系統 |
| 外文關鍵詞: | lithium-ion batteries, 1D coordination polymers, cathode materials, charge transfer, large-scale energy storage systems |
| 相關次數: | 點閱:82 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
鋰離子電池在日常生活中極重要的科技,且被認為是最有發展潛力的儲能系統之一,為了在符合經濟效益的條件之下提升鋰離子電池的能量密度、庫倫效率、安全性以及環境友善度,新型電極材料的開發有其必要性。此研究中,含有苯醌結構的新穎有機配位基分子1,4-二氰基-2,3,5,6-四羥基苯(LH4)與銅離子反應形成兩種一維銅-苯醌配位高分子, [CuL(DMF)2]n (CLD) 和 [CuL(Py)2]n (CLP),並用作為鋰離子電池的陰極材料。此中具苯醌結構的有機骨架,其共軛羰基在與鋰離子的反應過程中,可得失二個電子,因此金屬中心銅和有機骨架能夠進行協同氧化還原反應,提供多電子轉移過程。利用吡啶置換掉與銅軸向配位的二甲基甲醯胺分子,電池容量保有率以及倍率性能都有顯著的改善,在120 mA g-1 電流密度下的CLD可得電容量213 mAh g-1,而在45次循環充電之後尚有38.86 % 電池容量保有率;相較於在131 mA g-1電流密度下的CLP可得電容量240 mAh g-1,而在100次循環充電之後,電池容量保有率則高達66.25 %。CLP中的吡啶分子,強化π···π作用力,因此提供更多電子傳輸途徑,致使CLP呈現更加優越的倍率性能,尤其是在高電流密度1310 mA g-1下,電池容量保有率在100次循環後下降的非常少。非原位XPS和FT-IR揭示此兩種配位聚合物在放電/充電過程中的反應機制,Cu K-edge XANES和EXAFS的測量證實銅之價數和化學環境的變化,並藉由非原位與同步輻射原位X光繞射,以及高解析場發射穿透式電子顯微鏡證實在放電/充電過程中配位聚合物的結構資訊。對金屬有機陰極材料的充分了解可為新一代電池系統的設計策略奠定基礎。
Li-ion batteries (LIBs) have played a major role in our life and been considered as one of the most potential energy storage technologies. To enhance energy density, coulombic efficiency, safety, and environmental friendliness of LIBs with inexpensive price, new electrode materials must be developed to meet the requests of currently emerging applications especially in large-scale energy storage systems. Herein, a novel redox-active quinone-based organic bridging ligand, 1,4-dicyano-2,3,5,6-tetrahydroxybenzene (LH4), has been combined with copper building unit to form 1D copper-benzoquinoid coordination polymers (CPs), [CuL(DMF)2]n (CLD) and [CuL(Py)2]n (CLP), which have been used as cathode materials. The quinone-based organic building block is capable of two-electron reaction through the lithiation of its conjugated carbonyl groups. Both of the copper metal centers and organic moieties have demonstrated synergistic redox reaction allowing multiple-electron processes. By replacing the dimethylformamide (DMF) molecules which are axially coordinated to copper with pyridine (Py), both the capacity retention and rate capability are dramatically improved. For CLD at 120 mA g-1, a capacity as high as 213 mAh g-1 can be obtained with 38.86 % retention after 45 cycles whereas for CLP at 131 mA g-1, a capacity of 240 mAh g-1 can be delivered with 66.25 % retention after 100 cycles. The Py in CLP allows π···π interactions, thus providing electronic pathway along the 1D coordination polymer chain leading to superior rate capability as evidenced in CLP. A rate as high as 1310 mA g-1 can be achieved with very little capacity drop over 100 cycles. The reaction mechanism of the two coordination polymers during discharge/charge process is examined by ex-situ XPS and FT-IR. The valence changes and chemical environment of the copper species were clarified by Cu K-edge XANES and EXAFS measurements. In-house X-ray diffraction, synchrotron in-situ X-ray diffraction as well as HR-TEM were implemented to study the structural information of coordination polymers during discharge-charge processes. The comprehensively understanding of the metal-organic cathode materials for LIBs will provide the foundation of design strategies for next-generation battery systems.
(1) Lou, X. B.; Hu, X. S.; Li, C.; Ning, Y. Q.; Chen, Q.; Shen, M.; Hu, B. W. Room-Temperature Synthesis of a Cobalt 2,3,5,6-tetrafluoroterephthalic Coordination Polymer with Enhanced Capacity and Cycling Stability for Lithium Batteries. New J. Chem.2017, 41, 1813‒1819.
(2) Chu, S.; Majumdar, A. Opportunities and Challenges for a Sustainable Energy Future. Nature 2012, 488, 294‒303.
(3) Lee, S.; Kwon, G.; Ku, K.; Yoon, K.; Jung, S. K.; Lim, H. D.; Kang, K. Recent Progress in Organic Electrodes for Li and Na Rechargeable Batteries. Adv. Mater. 2018, 30, 1704682.
(4) Mauger, A.; Julien, C. M. Critical Review on Lithium-Ion Batteries: Are They Safe? Sustainable? Ionics 2017, 23, 1933‒1947.
(5) Manthiram, A. Materials Challenges and Opportunities of Lithium Ion Batteries. J. Am. Chem. Soc. 2013, 135, 12216-12219.
(6) Kaveevivitchai, W.; Jacobson, A. J. High Capacity Microporous Molybdenum–Vanadium Oxide Electrodes for Rechargeable Lithium Batteries. Chem. Mater. 2013, 25, 2708‒2715.
(7) Wild, A.; Strumpf, M.; Häupler, B.; Hager, M. D.; Schubert, U. S. All‐Organic Battery Composed of Thianthrene‐ and TCAQ‐Based Polymers. Adv. Energy Mater. 2017, 7, 1601415.
(8) Zhao, Q.; Zhu, Z. Q.; Chen, J. Molecular Engineering with Organic Carbonyl Electrode Materials for Advanced Stationary and Redox Flow Rechargeable Batteries. Adv. Mater. 2017, 29, 1607007 .
(9) Bhosale, M. E.; Chae, S.; Kim, J. M.; Choi, J. Y. Organic Small Molecules and Polymers as an Electrode Material for Rechargeable Lithium Ion Batteries. J. Mater. Chem. A 2018, 6, 19885‒19911.
(10) Kim, K. C. Design Strategies for Promising Organic Positive Electrodes in Lithium-Ion Batteries: Quinones and Carbon Materials. Ind. Eng. Chem. Res. 2017, 56, 12009‒12023.
(11) Song, Z. P.; Qian, Y. M.; Liu, X. Z.; Zhang, T.; Zhu, Y. B.; Yu, H. J.; Otani, M.; Zhou, H. S. A Quinone-Based Oligomeric Lithium Salt for Superior Li-Organic Batteries. Energy Environ. Sci. 2014, 7, 4077‒4086.
(12) Xie, J.; Gu, P.; Zhang, Q. Nanostructured Conjugated Polymers: Toward High-Performance Organic Electrodes for Rechargeable Batteries. ACS Energy Lett. 2017, 2, 1985‒1996.
(13) Zhang, Z.; Yoshikawa, H.; Awaga, K. Monitoring the Solid-State Electrochemistry of Cu(2,7-AQDC) (AQDC = Anthraquinone Dicarboxylate) in a Lithium Battery: Coexistence of Metal and Ligand Redox Activities in a Metal–Organic Framework. J. Am. Chem. Soc. 2014, 136, 16112‒16115.
(14) Zhang, Z.; Yoshikawa, H.; Awaga, K. Discovery of a “Bipolar Charging” Mechanism in the Solid-State Electrochemical Process of a Flexible Metal–Organic Framework. Chem. Mater. 2016, 28, 1298‒1303.
(15) Zhang, Z.; Awaga, K. Redox-active Metal–Organic Frameworks as Electrode Materials for Batteries. MRS Bull. 2016, 41, 883‒889.
(16) Liang, Z.; Qu, C.; Guo, W.; Zou, R.; Xu, Q. Pristine Metal–Organic Frameworks and their Composites for Energy Storage and Conversion. Adv. Mater. 2018, 30, 1702891.
(17) Wu, Z.; Xie, J.; Xu, Z. J.; Zhang, S.; Zhang, Q. Recent Progress in Metal-Organic Polymers as Promising Electrodes for Lithium/Sodium Rechargeable Batteries. J. Mater. Chem. A 2019, 7, 4259‒4290.
(18) Zhang, L.; Cheng, F. Y.; Shi, W.; Chen, J.; Cheng, P. Transition-Metal-Triggered High-Efficiency Lithium Ion Storage via Coordination Interactions with Redox-Active Croconate in One-Dimensional Metal–Organic Anode Materials. ACS Appl. Mater. Interfaces 2018, 10, 6398‒6406.
(19) Xiang, J. F.; Chang, C. X.; Li, M.; Wu, S. M.; Yuan, L. J.; Sun, J. T. A Novel Coordination Polymer as Positive Electrode Material for Lithium Ion Battery. Cryst. Growth Des. 2008, 8, 280‒282.
(20) Li, G. H.; Yang, H.; Li, F. C.; Cheng, F. Y.; Shi, W.; Chen, J.; Cheng, P. A Coordination Chemistry Approach for Lithium-Ion Batteries: The Coexistence of Metal and Ligand Redox Activities in a One-Dimensional Metal–Organic Material. Inorg. Chem. 2016, 55, 4935‒4940.
(21) Watson, S. M. D.; Wright, N. G.; Horrocks, B. R.; Houlton, A. Preparation, Characterization and Scanned Conductance Microscopy Studies of DNA-Templated One-Dimensional Copper Nanostructures. Langmuir 2010, 26, 2068‒2075.
(22) Sieuw, L.; Jouhara, A.; Quarez, E.; Auger, C.; Gohy, J. F.; Poizot, P.; Vlad, A. A H-Bond Stabilized Quinone Electrode Material for Li-Organic Batteries: the Strength of Weak Bonds. Chem. Sci. 2019, 10, 418‒426.
(23) Kaveevivitchai, W.; Manthiram, A. High-Capacity Zinc-Ion Storage in an Open-Tunnel Oxide for Aqueous and Nonaqueous Zn-Ion Batteries. J. Mater. Chem. A 2016, 4, 18737‒18741.
(24) Lee, H. H.; Lee, J. B.; Park, Y.; Park, K. H.; Okyay, M. S.; Shin, D. S.; Kim, S.; Park, J.; Park, N.; An, B. K.; Jung, Y. S.; Lee, H. W.; Lee, K. T.; Hong, S. Y. Coordination Polymers for High-Capacity Li-Ion Batteries: Metal-Dependent Solid-State Reversibility. ACS Appl. Mater. Interfaces 2018, 10, 22110‒22118.
(25) Song, Y. D.; Yu, L. L.; Gao, Y.; Shi, C. D.; Cheng, M. L.; Wang, X. M.; Liu, H. J.; Liu, Q. One-Dimensional Zinc-Based Coordination Polymer as a Higher Capacity Anode Material for Lithium Ion Batteries. Inorg. Chem. 2017, 56, 11603‒11609.
(26) Batten, S. R.; Champness, N. R.; Chen, X.-M.; Garcia-Martinez, J.; Kitagawa, S.; Öhrström, L.; O’Keeffe, M.; Suh, M. P.; Reedijk, J. Terminology of Metal–Organic Frameworks and Coordination Polymers (IUPAC Recommendations 2013). Pure Appl. Chem. 2013, 85, 1715‒1724.
(27) Batten, S. R.; Champness, N. R.; Chen, X.-M.; Garcia-Martinez, J.; Kitagawa, S.; Öhrström, L.; O'Keeffe, M.; Suh, M. P.; Reedijk, J. Coordination Polymers, Metal–Organic Frameworks and the Need for Terminology Guidelines. CrystEngComm 2012, 14, 3001‒3004.
(28) Alezi, D.; Belmabkhout, Y.; Suyetin, M.; Bhatt, P. M.; Weseliński, Ł. J.; Solovyeva, V.; Adil, K.; Spanopoulos, I.; Trikalitis, P. N.; Emwas, A.-H. MOF Crystal Chemistry Paving the Way to Gas Storage Needs: Aluminum Based soc-MOF for CH4, O2 and CO2 Storage. J. Am. Chem. Soc. 2015, 137, 13308‒13318.
(29) Bux, H.; Chmelik, C.; Krishna, R.; Caro, J. Ethene/Ethane Separation by the MOF Membrane ZIF-8: Molecular Correlation of Permeation, Adsorption, Diffusion. J. Membr. Sci. 2011, 369, 284‒289.
(30) García-García, P.; Müller, M.; Corma, A. MOF Catalysis in Relation to Their Homogeneous Counterparts and Conventional Solid Catalysts. Chem. Sci. 2014, 5, 2979‒3007.
(31) Bárcia, P. S.; Guimarães, D.; Mendes, P. A.; Silva, J. A.; Guillerm, V.; Chevreau, H.; Serre, C.; Rodrigues, A. E. Reverse Shape Selectivity in the Liquid-Phase Adsorption of Xylene Isomers in Zirconium Terephthalate MOF UiO-66. Microporous Mesoporous Mater. 2011, 139, 67‒73.
(32) Lu, K.; Aung, T.; Guo, N.; Weichselbaum, R.; Lin, W. Nanoscale Metal–Organic Frameworks for Therapeutic, Imaging, and Sensing Applications. Adv. Mater. 2018, 30, 1707634.
(33) Kumar, P.; Pournara, A.; Kim, K.-H.; Bansal, V.; Rapti, S.; Manos, M. J. Metal-Organic Frameworks: Challenges and Opportunities for Ion-Exchange/Sorption Applications. Prog. Mater. Sci. 2017, 86, 25‒74.
(34) Torad, N. L.; Li, Y.; Ishihara, S.; Ariga, K.; Kamachi, Y.; Lian, H.-Y.; Hamoudi, H.; Sakka, Y.; Chaikittisilp, W.; Wu, K. C.-W. MOF-derived Nanoporous Carbon as Intracellular Drug Delivery Carriers. Chem. Lett. 2014, 43, 717‒719.
(35) Zhao, Y.; Yang, X.-G.; Lu, X.-M.; Yang, C.-D.; Fan, N.-N.; Yang, Z.-T.; Wang, L.-Y.; Ma, L.-F. {Zn6} Cluster Based Metal–Organic Framework with Enhanced Room-Temperature Phosphorescence and Optoelectronic Performances. Inorg. Chem. 2019, 58, 6215‒6221.
(36) Liu, J.; Zhu, D.; Guo, C.; Vasileff, A.; Qiao, S. Z. Design Strategies toward Advanced MOF-Derived Electrocatalysts for Energy-Conversion Reactions. Adv. Energy Mater. 2017, 7, 1700518.
(37) Fromm, K. M. Coordination Polymers. Design, Analysis and Application. By Stuart R. Batten, Suzanne M. Neville and David R. Turner. Angew. Chem., Int. Ed. 2009, 48 , 4890‒4891.
(38) Kim, H.; Chun, H.; Kim, G.-H.; Lee, H.-S.; Kim, K. Vapor Phase Inclusion of Ferrocene and Its Derivative in a Microporous Metal–Organic Porous Material and Its Structural Characterization by Single Crystal X-ray Diffraction. Chem. Commun. 2006, 2759‒2761.
(39) Mendes, R. F.; Paz, F. A. A. Transforming Metal–Organic Frameworks into Functional Materials. Inorg. Chem. Front. 2015, 2, 495‒509.
(40) Whittingha, S. M. Intercalation Chemistry, Elsevier: 2012.
(41) An, Y.; Fei, H.; Zeng, G.; Ci, L.; Xi, B.; Xiong, S.; Feng, J. Commercial Expanded Graphite as a Low–Cost, Long-Cycling Life Anode for Potassium–Ion Batteries with Conventional Carbonate Electrolyte. J. Power Sources 2018, 378, 66‒72.
(42) Huggins, R. Advanced Batteries: Materials Science Aspects, Springer Science & Business Media: 2008.
(43) James, A.; Davies, C. W. A Dictionary of Electrochemistry, Springer: 1976.
(44) Allen J. Bard and Larry R. Faulkner, Electrochemical Methods: Fundamentals and Applications, New York: Wiley, 2001, 2nd ed.
(45) Xu, K. Nonaqueous Liquid Electrolytes for Lithium-Based Rechargeable Batteries. Chem. Rev. 2004, 104, 4303‒4418.
(46) Langhus, D. L. Analytical Electrochemistry, 2nd Edition (Wang, Joseph). J. Chem. Educ. 2001, 78, 457.
(47) Macdonald, D. Transient Techniques in Electrochemistry, Springer Science & Business Media: 2012.
(48) Lu, M. Supercapacitors: Materials, Systems, and Applications, John Wiley & Sons: 2013.
(49) Elgrishi, N.; Rountree, K. J.; McCarthy, B. D.; Rountree, E. S.; Eisenhart, T. T.; Dempsey, J. L. A Practical Beginner’s Guide to Cyclic Voltammetry. J. Chem. Educ. 2018, 95, 197‒206.
(50) Markevich, E.; Levi, M.; Aurbach, D. Comparison between Potentiostatic and Galvanostatic Intermittent Titration Techniques for Determination of Chemical Diffusion Coefficients in Ion-Insertion Electrodes. J. Electroanal. Chem. 2005, 580, 231‒237.
(51) Griggs, D.; Stafford-Smith, M.; Gaffney, O.; Rockström, J.; Öhman, M. C.; Shyamsundar, P.; Steffen, W.; Glaser, G.; Kanie, N.; Noble, I. Policy: Sustainable Development Goals for People and Planet. Nature 2013, 495, 305.
(52) Powers, D. S. Nuclear Energy Loses Cost Advantage. New York Times. Retrieved from http://www. nytimes. com/2010/07/27/business/global/27iht-renuke. html 2010.
(53) Brooks, G.; Siddall, E. An Analysis of the Three Mile Island Accident; CM-P00067632: 1980.
(54) Marples, D. R. The Social Impact of the Chernobyl Disaster, Springer: 1988.
(55) Do, X. B. Return Migration after the Fukushima Daiichi Nuclear Sisaster: the Impact of Institutional and Individual Factors. Disasters.
(56) Ellabban, O.; Abu-Rub, H.; Blaabjerg, F. Renewable Energy Resources: Current Status, Future Prospects and Their Enabling Technology. Renew. Sust. Energ. Rev. 2014, 39, 748‒764.
(57) Su, W.; Wang, J.; Roh, J. Stochastic Energy Scheduling in Microgrids with Intermittent Renewable Rnergy Resources. IEEE Trans Smart Grid 2013, 5, 1876‒1883.
(58) Melot, B. C.; Tarascon, J.-M. Design and Preparation of Materials for Advanced Electrochemical Storage. Acc. Chem. Res. 2013, 46, 1226‒1238.
(59) Zheng, S.; Li, X.; Yan, B.; Hu, Q.; Xu, Y.; Xiao, X.; Xue, H.; Pang, H. Transition‐Metal (Fe, Co, Ni) Based Metal‐Organic Frameworks for Electrochemical Energy Storage. Adv. Energy Mater. 2017, 7, 1602733.
(60) Goodenough, J. B. Evolution of Strategies for Modern Rechargeable Batteries. Acc. Chem. Res. 2013, 46, 1053‒1061.
(61) Bergmann, K. Japanese Submarine Looking More Likely. Asia-Pacific Defence Reporter (2002) 2014, 40, 12.
(62) Chang, C.-H.; Li, A.-C.; Popovs, I.; Kaveevivitchai, W.; Chen, J.-L.; Chou, K.-C.; Kuo, T.-S.; Chen, T.-H. Elucidating Metal and Ligand Redox Activities of a Copper-Benzoquinoid Coordination Polymer as the Cathode for Lithium-Ion Batteries. J. Mater. Chem. A 2019, 7, 23770‒23774.
(63) Kim, S.-J.; Onishi, K.; Matsumoto, M.; Shigehara, K. Lithium Rechargeable Batteries Composed of Octacyanophthalocyaninatoiron and Its Polymer Complex as Cathode. J. Porphyrins Phthalocyanines 2001, 5, 397‒404.
(64) Asai, Y.; Onishi, K.; Miyata, S.; Kim, S.-J.; Matsumoto, M.; Shigehara, K. Octacyanophthalocyaninatoiron Polymer as Cathode Material for a Secondary Lithium Battery. J. Electrochem. Soc. 2001, 148, A305‒A310.
(65) Xiang, J. F.; Chang, C. X.; Li, M.; Wu, S. M.; Yuan, L. J.; Sun, J. T. A Novel Coordination Polymer as Positive Electrode Material for Lithium Ion Battery. Cryst. Growth Des. 2008, 8, 280‒282.
(66) Song, Z. P.; Qian, Y. M.; Liu, X. Z.; Zhang, T.; Zhu, Y. B.; Yu, H. J.; Otani, M.; Zhou, H. S. A Quinone-Based Oligomeric Lithium Salt for Superior Li-Organic Batteries. Energy Environ. Sci. 2014, 7, 4077‒4086.
(67) Kapaev, R. R.; Olthof, S.; Zhidkov, I. S.; Kurmaev, E. Z.; Stevenson, K. J.; Meerholz, K.; Troshin, P. A. Nickel(II) and Copper(II) Coordination Polymers Derived from 1,2,4,5-Tetraaminobenzene for Lithium-Ion Batteries. Chem. Mater. 2019, 31, 5197‒5205.
(68) Tian, B.; Ning, G.-H.; Gao, Q.; Tan, L.-M.; Tang, W.; Chen, Z.; Su, C.; Loh, K. P. Crystal Engineering of Naphthalenediimide-Based Metal–Organic Frameworks: Structure-Dependent Lithium Storage. ACS Appl. Mater. Interfaces 2016, 8, 31067‒31075.
(69) Gu, S.; Bai, Z.; Majumder, S.; Huang, B.; Chen, G. Conductive Metal–Organic Framework with Redox Metal Center as Cathode for High Rate Performance Lithium Ion Battery. J. Power Sources. 2019, 429, 22‒29.
(70) Yamada, T.; Shiraishi, K.; Kitagawa, H.; Kimizuka, N. Applicability of MIL-101(Fe) as a Cathode of Lithium Ion Batteries. Chem. Commun. 2017, 53, 8215‒8218.
(71) Férey, G.; Millange, F.; Morcrette, M.; Serre, C.; Doublet, M. L.; Grenèche, J. M.; Tarascon, J. M. Mixed‐Valence Li/Fe‐Based Metal–Organic Frameworks with Both Reversible Redox and Sorption Properties. Angew. Chem., Int. Ed. 2007, 46, 3259‒3263.
(72) Peng, Z.; Yi, X.; Liu, Z.; Shang, J.; Wang, D. Triphenylamine-Based Metal–Organic Frameworks as Cathode Materials in Lithium-Ion Batteries with Coexistence of Redox Active Sites, High Working Voltage, and High Rate Stability. ACS Appl. Mater. Interfaces 2016, 8, 14578‒14585.
(73) Du, Z.-Q.; Li, Y.-P.; Wang, X.-X.; Wang, J.; Zhai, Q.-G. Enhanced Electrochemical Performance of Li–Co-BTC Ternary Metal–Organic Frameworks as Cathode Materials for Lithium-Ion Batteries. Dalton Trans. 2019, 48, 2013‒2018.
(74) Kaveevivitchai, W.; Jacobson, A. J. Exploration of Vanadium Benzenedicarboxylate as a Cathode for Rechargeable Lithium Batteries. J. Power Sources 2015, 278, 265‒273.
(75) Asakura, D.; Li, C. H.; Mizuno, Y.; Okubo, M.; Zhou, H.; Talham, D. R. Bimetallic Cyanide-Bridged Coordination Polymers as Lithium Ion Cathode Materials: Core@Shell Nanoparticles with Enhanced Cyclability. J. Am. Chem. Soc. 2013, 135, 2793‒2799.
(76) Asakura, D.; Okubo, M.; Mizuno, Y.; Kudo, T.; Zhou, H.; Ikedo, K.; Mizokawa, T.; Okazawa, A.; Kojima, N. Fabrication of a Cyanide-Bridged Coordination Polymer Electrode for Enhanced Electrochemical Ion Storage Ability. J. Phys. Chem. C 2012, 116, 8364‒8369.
(77) Zhang, K.; Lee, T. H.; Cha, J. H.; Varma, R. S.; Choi, J.-W.; Jang, H. W.; Shokouhimehr, M. Cerium Hexacyanocobaltate: A Lanthanide-Compliant Prussian Blue Analogue for Li-Ion Storage. ACS Omega 2019, 4, 21410‒21416.
(78) Shimizu, T.; Wang, H.; Matsumura, D.; Mitsuhara, K.; Ohta, T.; Yoshikawa, H. Porous Metal–Organic Frameworks Containing Reversible Disulfide Linkages as Cathode Materials for Lithium‐Ion Batteries. ChemSusChem 2020, 13, 2256‒2263.
(79) Jiang, Q.; Xiong, P.; Liu, J.; Xie, Z.; Wang, Q.; Yang, X. Q.; Hu, E.; Cao, Y.; Sun, J.; Xu, Y. A Redox‐Active 2D Metal–Organic Framework for Efficient Lithium Storage with Extraordinary High Capacity. Angew. Chem., Int. Ed. 2020, 132, 5311‒5315.
(80) Zhao, L.; Guan, Z.; Ullah, Z.; Yu, C.; Song, H.; Chu, R.; Zhang, Y.; Li, W.; Li, Q.; Liu, L. Significantly Stable Organic Cathode for Lithium-Ion Battery Based on Nanoconfined Poly(anthraquinonyl sulfide)@MOF-Derived Microporous Carbon. Electrochim. Acta 2020, 335, 135681.
(81) Amores, M.; Wada, K.; Sakaushi, K.; Nishihara, H. Reversible Energy Storage in Layered Copper-Based Coordination Polymers: Unveiling the Influence of the Ligand’s Functional Group on Their Electrochemical Properties. J. Phys. Chem. C 2020, 124, 9215‒9224.
(82) Rafiee, M.; Nematollahi, D. Voltammetry of Electroinactive Species Using Quinone/Hydroquinone Redox: A Known Redox System Viewed in a New Perspective. Electroanalysis 2007, 19, 1382‒1386.
(83) Kaveevivitchai, W.; Wang, X.; Liu, L.; Jacobson, A. J. Two Distinct Redox Intercalation Reactions of Hydroquinone with Porous Vanadium Benzenedicarboxylate MIL-47. Inorg. Chem. 2015, 54, 1822‒1828.
(84) Hanyu, Y.; Ganbe, Y.; Honma, I. Application of Quinonic Cathode Compounds for Quasi-Solid Lithium Batteries. J. Power Sources 2013, 221, 186‒190.
(85) Liu, T.; Liu, M. M.; Zheng, X. W.; Du, C. Y.; Cui, X. Y.; Wang, L.; Han, L. L.; Yu, Z. Y. Substituent Effects on the Redox Potentials of Dihydroxybenzenes: Theoretical and Experimental Study. Tetrahedron 2014, 70, 9033‒9040.
(86) Sato, K.; Imai, H.; Oaki, Y. Two-Dimensional Conductive and Redox-Active Nanostructures Synthesized by Crystal-Controlled Polymerization for Electrochemical Applications. ACS Appl. Nano Mater. 2018, 1, 4218‒4226.
(87) Kawata, S.; Kitagawa, S.; Kumagai, H.; Kudo, C.; Kamesaki, H.; Ishiyama, T.; Suzuki, R.; Kondo, M.; Katada, M. Rational Design of a Novel Intercalation System. Layer-Gap Control of Crystalline Coordination Polymers, {[Cu(CA)(H2O)m](G)}n (m = 2, G = 2,5-Dimethylpyrazine and Phenazine; m = 1, G = 1,2,3,4,6,7,8,9-Octahydrophenazine). Inorg. Chem. 1996, 35, 4449‒4461.
(88) Munakata, M.; Ning, G. L.; Kuroda-Sowa, T.; Maekawa, M.; Suenaga, Y.; Horino, T. Construction of copper(I) coordination polymers of 1,2,4,5-tetracyanobenzene with zigzag sheet and porous frameworks. Inorganic Chemistry 1998, 37 (21), 5651-5656, DOI: 10.1021/ic980427v.
(89) Kuroda-Sowa, T.; Horino, T.; Yamamoto, M.; Ohno, Y.; Maekawa, H.; Munakata, M. Structural Control of Copper(I) Coordination Polymers: Construction of One-, Two-, and Three-Dimensional Frameworks of Tetrahedral Copper(I) Ions Bridged by Dicyanobenzene Derivatives. Inorg. Chem. 1997, 36, 6382‒6389.
(90) Broderick, M. K.; Yang, C.; Pike, R. D.; Nicholas, A.; May, D.; Patterson, H. H. Copper (I) Oligomers and Polymers with Dicyanobenzene and Cyanopyridine Ligands. Polyhedron 2016, 114, 333‒343.
(91) Setifi, F.; Geiger, D. K.; Abdul Razak, I.; Setifi, Z. Multiple N-H···NC, C-H···NC and Nitrile···π Interactions in 4,4'-bipyridine-1,1'-diium Bis(1,1,3,3-tetracyano-2-ethoxypropenide): Structure Determination and DFT Calculations of Anion···π Cation Interaction Energies. 2015, 71, 658‒663.
(92) Peter, A.; Mohan, M.; Maris, T.; Wuest, J. D.; Duong, A. Comparing Crystallizations in Three Dimensions and Two Dimensions: Behavior of Isomers of [2,2'-Bipyridine]dicarbonitrile and [1,10-Phenanthroline]dicarbonitrile. Cryst. Growth Des. 2017, 17, 5242‒5248.
(93) The material characterization of [CuL(DMF)2]n including single-crystal XRD, IR, and TGA was carried by Cheng-Han Chang from Department of Chemistry, Tamkang University.
(94) Luo, T. T.; Liu, Y. H.; Tsai, H. L.; Su, C. C.; Ueng, C. H.; Lu, K. L. A Novel Hybrid Supramolecular Network Assembled from Perfect π−π Stacking of an Anionic Inorganic Layer and a Cationic Hydronium‐Ion‐Mediated Organic Layer. Eur. J. Inorg. Chem. 2004, 2004, 4253‒4258.
(95) Abrahams, B. F.; Hudson, T. A.; McCormick, L. J.; Robson, R. Coordination Polymers of 2,5-dihydroxybenzoquinone and Chloranilic Acid with the (10,3)-A Topology. Cryst. Growth Des. 2011, 11, 2717‒2720.
(96) Darago, L. E.; Aubrey, M. L.; Yu, C. J.; Gonzalez, M. I.; Long, J. R. Electronic Conductivity, Ferrimagnetic Ordering, and Reductive Insertion Mediated by Organic Mixed-Valence in a Ferric Semiquinoid Metal–Organic Framework. J. Am. Chem. Soc. 2015, 137, 15703‒15711.
(97) DeGayner, J. A.; Jeon, I.-R.; Sun, L.; Dincă, M.; Harris, T. D. 2D Conductive Iron-Quinoid Magnets Ordering up to Tc = 105 K via Heterogenous Redox Chemistry. J. Am. Chem. Soc.2017, 139, 4175‒4184.
(98) Jeon, I.-R.; Negru, B.; Van Duyne, R. P.; Harris, T. D. A 2D Semiquinone Radical-Containing Microporous Magnet with Solvent-Induced Switching from Tc = 26 to 80 K. J. Am. Chem. Soc. 2015, 137, 15699‒15702.
(99) Liu, L. J.; DeGayner, J. A.; Sun, L.; Zee, D. Z.; Harris, T. D. Reversible Redox Switching of Magnetic Order and Electrical Conductivity in a 2D Manganese Benzoquinoid Framework. Chem. Sci. 2019, 10, 4652‒4661.
(100) Liu, L.; Li, L.; DeGayner, J. A.; Winegar, P. H.; Fang, Y.; Harris, T. D. Harnessing Structural Dynamics in a 2D Manganese-Benzoquinoid Framework To Dramatically Accelerate Metal Transport in Diffusion-Limited Metal Exchange Reactions. J. Am. Chem. Soc. 2018, 140, 11444‒11453.
(101) DeGayner, J. A.; Wang, K.; Harris, T. D. A Ferric Semiquinoid Single-Chain Magnet via Thermally-Switchable Metal-Ligand Electron Transfer. J. Am. Chem. Soc. 2018, 140, 6550‒6553.
(102) Kawata, S.; Kitagawa, S.; Kondo, M.; Katada, M. Fabrication of Infinite Two-and Three-Dimensional Copper Coordination Polymers of Chloranilic Acid and Its Derivatives. Crystal structures and magnetic properties. Synth. Met. 1995, 71, 1917‒1918.
(103) Kumagai, H.; Kawata, S.; Kitagawa, S. Fabrication of Infinite Two-Dimensional Sheets of Tetragonal Metal (II) Lattices: X-Ray Crystal Structures and Magnetic Properties of [M(CA)(pyz)]n (M2+= Mn2+ and Co2+; H2CA= chloranilic acid; pyz= pyrazine). Inorg. Chim. Acta 2002, 337, 387‒392.
(104) Wang, X. X.; Zhang, B. Q.; Zhang, W.; Yu, M. X.; Cui, L.; Cao, X. Y.; Liu, J. Q. Super-light Cu@Ni Nanowires/Graphene Oxide Composites for Significantly Enhanced Microwave Absorption Performance. Sci. Rep. 2017, 7.
(105) Jin, Z.; Liu, C.; Qi, K.; Cui, X. Q. Photo-Reduced Cu/CuO Nanoclusters on TiO2 Nanotube Arrays as Highly Efficient and Reusable Catalyst. Sci. Rep. 2017, 7.
(106) Wang, J. Y.; Deng, Q. L.; Li, M. J.; Jiang, K.; Zhang, J. Z.; Hu, Z. G.; Chu, J. H. Copper Ferrites@reduced Graphene Oxide Anode Materials for Advanced Lithium Storage Applications. Sci. Rep. 2017, 7.