| 研究生: |
羅筱淯 Lo, Hsiao-Yu |
|---|---|
| 論文名稱: |
腸道柔嫩梭狀桿菌改善青少年非酒精性脂肪肝疾病發炎之角色 The role of gut Faecalibacterium prausnitzii in alleviating inflammation of adolescent nonalcoholic fatty liver disease |
| 指導教授: |
楊燿榮
Yang, Yao-Jong 蔡曜聲 Tsai, Yau-Sheng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 臨床醫學研究所碩士在職專班 Institute of Clinical Medicine(on the job class) |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 英文 |
| 論文頁數: | 51 |
| 中文關鍵詞: | 非酒精性脂肪肝疾病 、柔嫩梭狀桿菌 、丁酸鹽 、G蛋白偶聯受體 |
| 外文關鍵詞: | nonalcoholic fatty liver disease, Faecalibacterium prausnitzii, butyrate, G protein-coupled receptor |
| 相關次數: | 點閱:109 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
背景: 隨著兒童肥胖的流行,非酒精性脂肪肝疾病成為全球新興的健康問題,目前仍無美國食品藥品管理局核准治療非酒精性脂肪肝炎之藥物。腸道菌叢及其代謝物在肥胖及非酒精性脂肪肝疾病的發生扮演重要角色。柔嫩梭狀桿菌是大腸內盛產丁酸鹽的腸道菌之一,研究顯示丁酸鹽藉由與G蛋白偶聯受體(GPR)作用產生抗發炎及免疫調節功能。然而,丁酸鹽與G蛋白偶聯受體在非酒精性脂肪肝疾病致病機轉及治療扮演的角色仍不明確,本研究目的是探討腸道菌叢、短鏈脂肪酸以及G蛋白偶聯受體可能提供青少年非酒精性脂肪肝疾病致病機轉及治療的新知。
目標: 探討柔嫩梭狀桿菌、丁酸鹽及G蛋白偶聯受體在青少年非酒精性脂肪肝疾病扮演之角色。
方法: 此橫斷性研究於成大醫院收案12-18歲肥胖且具非酒精性脂肪肝疾病和正常體重青少年(對照組)。非酒精性脂肪肝疾病組收案條件為肥胖且超音波檢查顯示脂肪肝者,排除條件為罹患與非酒精性脂肪肝疾病無關之急性或慢性系統性疾病、於收案前一個月內曾服用抗生素或益生菌者。收集受試者糞便檢體,使用定量即時聚合酶連鎖反應分析柔嫩梭狀桿菌相對菌量,並以高效液相色谱法檢測糞便丁酸鹽濃度,檢測血漿代謝指標及細胞激素。同時分離出周邊血單核細胞以定量逆轉錄聚合酶連鎖反應分析其GPR41及GPR43 mRNA表現量。
結果: 本研究自2019年7月起已收案16位非酒精性脂肪肝疾病及9位體重正常之青少年。非酒精性脂肪肝疾病組之糞便柔嫩梭狀桿菌菌量及丁酸鹽濃度均顯著低於對照組(P = 0.003於柔嫩梭狀桿菌比較; P = 0.02於丁酸鹽比較)。此外,非酒精性脂肪肝疾病組之血漿IL-10低於對照組(P = 0.06)。根據超音波檢測結果,嚴重脂肪肝組之糞便柔嫩梭狀桿菌菌量顯著低於對照組(P = 0.01)。隨著超音波檢測脂肪肝嚴重度增加,糞便丁酸鹽濃度有逐漸下降之趨勢(P = 0.05)。糞便丁酸鹽濃度和血漿IL-10呈正相關(rs = 0.50, P = 0.007),與身體質量指數呈負相關(rs = -0.42, P = 0.02)。
結論: 非酒精性脂肪肝疾病組之糞便柔嫩梭狀桿菌菌量及丁酸鹽濃度均顯著低於對照組。IL-10可能與丁酸鹽於非酒精性脂肪肝疾病的抗發炎效果有關。關於柔嫩梭狀桿菌及丁酸鹽在非酒精性脂肪肝疾病之抗發炎機轉有待後續研究進一步探討。
Background: Concurrent with the epidemic of pediatric obesity, nonalcoholic fatty liver disease (NAFLD) is a burgeoning public health problem worldwide. No Food and Drug Administration-approved treatment for non-alcoholic steatohepatitis (NASH) currently exists. Intestinal microbiota and short-chain fatty acids (SCFAs) play important roles in the development of obesity and NAFLD. Faecalibacterium prausnitzii is one of the most abundant butyrate-producing bacteria in the colon. Butyrate has been reported to modulate immune and inflammatory responses via the interactions with G protein-coupled receptors (GPRs). However, the role of SCFA-GPR axis in the pathogenesis and treatment of NAFLD is still unclear. Our investigation of microbiota-SCFA-GPR axis may provide a new insight of the pathogenesis and treatment of adolescent NAFLD.
Aims: This study aimed to explore the role of F. prausnitzii-butyrate-GPR axis in adolescent NAFLD.
Methods: In this cross-sectional study, obese adolescents aged 12-18 years with sonographic evidence of fatty liver (NAFLD group) and normal-weight healthy adolescents (control group) were recruited from the National Cheng Kung University Hospital. Eligibility criteria of the NAFLD group include obesity with sonographic evidence of fatty liver. Exclusion criteria include any acute or chronic systemic diseases unrelated to NAFLD, and use of antibiotics or probiotics within one month preceding the enrollment. Overnight fasting blood samples and fecal samples were collected. Fecal F. prausnitzii relative quantity was measured by quantitative real-time polymerase chain reaction analysis, and SCFAs were detected by high performance liquid chromatography. Plasma metabolic parameters and cytokine profiles were examined, and peripheral blood mononuclear cells were collected for GPR41 and GPR43 mRNA expression by quantitative reverse transcription- polymerase chain reaction.
Results: Sixteen obese adolescents with sonographic evidence of fatty liver (NAFLD group) and nine normal-weight volunteers (control group) have been enrolled since July, 2019. The NAFLD group had significantly lower fecal F. prausnitzii abundance (P = 0.003) and lower butyrate concentration (P = 0.02) than the control group. Furthermore, the NAFLD group had lower plasma IL-10 concentration than control group (P = 0.06). According to the sonographic grading of fatty liver, fecal F. prausnitzii abundance of the severe fatty liver group was significantly lower than the normal group (P = 0.01). There was a trend that the fecal butyrate concentrations gradually decreased as the fatty liver became more severe (P = 0.005). Fecal butyrate concentration was positively associated with plasma IL-10 level (rs = 0.50, P = 0.007), but butyrate correlated negatively with body mass index (rs = -0.42, P = 0.02).
Conclusion: Lower fecal F. prausnitzii abundance and lower butyrate concentration was associated with adolescent NAFLD. IL-10 may play a role in the anti-inflammatory effect of butyrate in NAFLD. Further studies are needed to clarify the anti-inflammatory mechanism of F. prausnitzii and butyrate in NAFLD.
Anderson, E. L., Howe, L. D., Jones, H. E., Higgins, J. P., Lawlor, D. A., Fraser, A. The prevalence of non-alcoholic fatty liver disease in children and adolescents: a systematic review and meta-analysis. PloS one. 10:e0140908; 2015.
Aoyama, M., Kotani, J., Usami, M. Butyrate and propionate induced activated or non-activated neutrophil apoptosis via HDAC inhibitor activity but without activating GPR-41/GPR-43 pathways. Nutrition. 26:653-661; 2010.
Arab, J. P., Arrese, M., & Trauner, M. Recent Insights into the Pathogenesis of Nonalcoholic Fatty Liver Disease. Annual Review of Pathology: Mechanisms of Disease. 13:321-350; 2018.
Balamurugan, R., Rajendiran, E., George, S., Samuel, G. V., Ramakrishna, B. S. Real-time polymerase chain reaction quantification of specific butyrate-producing bacteria, Desulfovibrio and Enterococcus faecalis in the feces of patients with colorectal cancer. Journal of gastroenterology and hepatology. 23:1298-1303; 2008.
Balamurugan, R., George, G., Kabeerdoss, J., Hepsiba, J., Chandragunasekaran, A. M., Ramakrishna, B. S. Quantitative differences in intestinal Faecalibacterium prausnitzii in obese Indian chil¬dren. British journal of nutrition. 103:335-338; 2010.
Baumann, A., Jin, C. J., Brandt, A., Sellmann, C., Nier, A., Burkard, M., et al. Oral supplementation of sodium butyrate attenuates the progression of non-alcoholic steatohepatitis. Nutrients. 12:951; 2020.
Bjursell, M., Admyre, T., Göransson, M., Marley, A. E., Smith, D. M., Oscarsson, J., Bohlooly-Y, M. Improved glucose control and reduced body fat mass in free fatty acid receptor 2-deficient mice fed a high-fat diet. American Journal of Physiology-Endocrinology and Metabolism. 300:E211-E220; 2011.
Bloemen, J. G., Venema, K., van de Poll, M. C., Damink, S. W. O., Buurman, W. A., Dejong, C. H. Short chain fatty acids exchange across the gut and liver in humans measured at surgery. Clinical nutrition. 28:657-661; 2009.
Borgo, F., Verduci, E., Riva, A., Lassandro, C., Riva, E., Morace, G., Borghi, E. Relative abundance in bacterial and fungal gut microbes in obese children: a case control study. Childhood Obesity. 13:78-84; 2017.
Brahe, L. K., Astrup, A., & Larsen, L. H. Is butyrate the link between diet, intestinal microbiota and obesity-related metabolic diseases? Obesity reviews. 14:950-959; 2013.
Chang, P.V., Hao, L., Offermanns, S., Medzhitov, R. The microbial metabolite butyrate regulates intestinal macrophage function via histone deacetylase inhibition. Proceedings of the National Academy of Sciences. 111:2247-2252; 2014.
Cummings, J., Pomare, E. W., Branch, W. J., Naylor, C. P., Macfarlane, G. T. Short chain fatty acids in human large intestine, portal, hepatic and venous blood. Gut. 28:1221-1227; 1987.
Da Silva, H. E., Teterina, A., Comelli, E. M., Taibi, A., Arendt, B. M., Fischer, S. E., et al. Nonalcoholic fatty liver disease is associated with dysbiosis independent of body mass index and insulin resistance. Scientific reports. 8:1-12; 2018.
Del Chierico, F., Abbatini, F., Russo, A., Quagliariello, A., Reddel, S., Capoccia, D., et al. Gut Microbiota Markers in Obese Adolescent and Adult Patients: Age-Dependent Differential Patterns. Frontiers in microbiology. 9:1210; 2018.
Den Besten, G., van Eunen, K., Groen, A. K., Venema, K., Reijngoud, D. J., Bakker, B. M. The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. Journal of lipid research. 54:2325-2340; 2013.
Deroover, L., Boets, E., Tie, Y., Vandermeulen, G., Verbeke, K. Quantification of Plasma or Serum Short-chain Fatty Acids: Choosing the Correct Blood Tube. Journal of Nutritional Health & Food Science. 5:1-6; 2017.
Duseja, A., Chawla, Y. K. Obesity and NAFLD: the role of bacteria and microbiota. Clinics in liver disease. 18:59-71; 2014.
Feng, J., Tang, H., Li, M., Pang, X., Wang, L., Zhang, M., et al. The abundance of fecal Faecalibacterium prausnitzii in relation to obesity and gender in Chinese adults. Archives of microbiology. 196:73-77; 2014.
Gao, Z., Yin, J., Zhang, J., Ward, R. E., Martin, R. J., Lefevre, M., et al. Butyrate improves insulin sensitivity and increases energy expenditure in mice. Diabetes. 58:1509-1517; 2009.
Ge, H., Li, X., Weiszmann, J., Wang, P., Baribault, H., Chen, J. L., et al. Activation of G protein-coupled receptor 43 in adipocytes leads to inhibition of lipolysis and suppression of plasma free fatty acids. Endocrinology. 149:4519-4526; 2008.
Ghanim, H., Aljada, A., Hofmeyer, D., Syed, T., Mohanty, P., Dandona, P. Circulating mononuclear cells in the obese are in a proinflammatory state. Circulation. 110:1564-1571; 2004.
Gkolfakis, P., Dimitriadis, G., Triantafyllou, K. Gut microbiota and non-alcoholic fatty liver disease. Hepatobiliary Pancreat Dis Int. 14:572-581; 2015.
Hardy, L. L., Jin, K., Mihrshahi, S., Ding, D. Trends in overweight, obesity, and waist-to-height ratio among Australian children from linguistically diverse backgrounds, 1997 to 2015. International Journal of Obesity. 43:116-124; 2019.
Henao-Mejia, J., Elinav, E., Jin, C., Hao, L., Mehal, W. Z., Strowig, T., et al. Inflammasome-mediated dysbiosis regulates progression of NAFLD and obesity. Nature. 482:179-185; 2012.
Huang, W., Zhou, L., Guo, H., Xu, Y., Xu, Y. The role of short-chain fatty acids in kidney injury induced by gut-derived inflammatory response. Metabolism. 68:20-30; 2017.
Iino, C., Endo, T., Mikami, K., Hasegawa, T., Kimura, M., Sawada, N., et al. Significant decrease in Faecalibacterium among gut microbiota in nonalcoholic fatty liver disease: a large BMI-and sex-matched population study. Hepatology international. 13:748-756; 2019.
Jin, C. J., Sellmann, C., Engstler, A. J., Ziegenhardt, D., Bergheim, I. Supplementation of sodium butyrate protects mice from the development of non-alcoholic steatohepatitis (NASH). British Journal of Nutrition. 114:1745-1755; 2015.
Keskin, M., Kurtoglu, S., Kendirci, M., Atabek, M. E., Yazici, C. Homeostasis model assessment is more reliable than the fasting glucose/insulin ratio and quantitative insulin sensitivity check index for assessing insulin resistance among obese children and adolescents. Pediatrics.115:e500-e503; 2005.
Kim, M. H., Kang, S. G., Park, J. H., Yanagisawa, M., Kim, C. H. Short-chain fatty acids activate GPR41 and GPR43 on intestinal epithelial cells to promote inflammatory responses in mice. Gastroenterology. 145:396-406; 2013.
Kimura, I., Ozawa, K., Inoue, D., Imamura, T., Kimura, K., Maeda, T., et al. The gut microbiota suppresses insulin-mediated fat accumulation via the short-chain fatty acid receptor GPR43. Nature communications. 4:1-12; 2013.
Kimura, I., Inoue, D., Hirano, K., Tsujimoto, G. The SCFA receptor GPR43 and energy metabolism. Frontiers in endocrinology. 5:85; 2014.
Le Poul, E., Loison, C., Struyf, S., Springael, J. Y., Lannoy, V., Decobecq, M. E., et al. Functional characterization of human receptors for short chain fatty acids and their role in polymorphonuclear cell activation. Journal of Biological Chemistry. 278:25481-25489; 2003.
Li, M., van Esch, B. C., Wagenaar, G. T., Garssen, J., Folkerts, G., Henricks, P. A. Pro-and anti-inflammatory effects of short chain fatty acids on immune and endothelial cells. European journal of pharmacology. 831:52-59; 2018.
Li, X. N., Song, J., Zhang, L., LeMaire, S. A., Hou, X., Zhang, C., et al. Activation of the AMPK-FOXO3 pathway reduces fatty acid-induced increase in intracellular reactive oxygen species by upregulating thioredoxin. Diabetes. 58:2246-2257; 2009.
Liu, S. F., Malik, A. B. NF-κB activation as a pathological mechanism of septic shock and inflammation. American Journal of Physiology-Lung Cellular and Molecular Physiology. 290:L622-L645; 2006.
Lopez-Siles, M., Martinez-Medina, M., Surís-Valls, R., Aldeguer, X., Sabat-Mir, M., Duncan, S. H., et al. Changes in the abundance of Faecalibacterium prausnitzii phylogroups I and II in the intestinal mucosa of inflammatory bowel disease and patients with colorectal cancer. Inflammatory bowel diseases. 22:28-41; 2016.
Lu, Y., Fan, C., Li, P., Lu, Y., Chang, X., Qi, K. Short chain fatty acids prevent high-fat-diet-induced obesity in mice by regulating G protein-coupled receptors and gut microbiota. Scientific reports. 6:1-13; 2016.
Martín, R., Bermúdez-Humarán, L. G., Langella, P. Searching for the bacterial effector: The example of the multi-skilled commensal bacterium Faecalibacterium prausnitzii. Frontiers in microbiology. 9:346; 2018.
Maslowski, K. M., Vieira, A. T., Ng, A., Kranich, J., Sierro, F., Yu, D., et al. Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43. Nature. 461:1282-1286; 2009.
McCrindle, B. W., Manlhiot, C., Millar, K., Gibson, D., Stearne, K., Kilty, H., et al. Population trends toward increasing cardiovascular risk factors in Canadian adolescents. The Journal of pediatrics. 157:837-843; 2010.
McNelis, J. C., Lee, Y. S., Mayoral, R., van der Kant, R., Johnson, A. M., Wollam, J., Olefsky, J. M. GPR43 potentiates β-cell function in obesity. Diabetes. 64:3203-3217; 2015.
Miquel, S., Martin, R., Rossi, O., Bermudez-Humaran, L. G., Chatel, J. M., Sokol, H., et al. Faecalibacterium prausnitzii and human intestinal health. Current opinion in microbiology. 16:255-261; 2013.
Mueller, S., Saunier, K., Hanisch, C., Norin, E., Alm, L., Midtvedt, T., et al. Differences in fecal microbiota in different European study populations in relation to age, gender, and country: a cross-sectional study. Applied and environmental microbiology. 72:1027-1033; 2006.
Munukka, E., Pekkala, S., Wiklund, P., Rasool, O., Borra, R., Kong, L., et al. Gut-adipose tissue axis in hepatic fat accumulation in humans. Journal of hepatology. 61:132-138; 2014.
Munukka, E., Rintala, A., Toivonen, R., Nylund, M., Yang, B., Takanen, A., et al. Faecalibacterium prausnitzii treatment improves hepatic health and reduces adipose tissue inflammation in high-fat fed mice. The ISME journal. 11:1667-1679; 2017.
Neish, A. S. Microbes in gastrointestinal health and disease. Gastroenterology. 136:65-80; 2009.
Ni, Y. F., Wang, J., Yan, X. L., Tian, F., Zhao, J. B., Wang, Y. J., Jiang, T. Histone deacetylase inhibitor, butyrate, attenuates lipopolysaccharide-induced acute lung injury in mice. Respiratory research. 11:1-8; 2010.
Nilsson, N. E., Kotarsky, K., Owman, C., Olde, B. Identification of a free fatty acid receptor, FFA2R, expressed on leukocytes and activated by short-chain fatty acids. Biochemical and biophysical research communications. 303:1047-1052; 2003.
Nobili, V., Svegliati-Baroni, G., Alisi, A., Miele, L., Valenti, L., Vajro, P. A 360-degree overview of paediatric NAFLD: recent insights. Journal of hepatology. 58:1218-1229; 2013.
Nobili, V., Socha, P. Pediatric nonalcoholic fatty liver disease: current thinking. Journal of pediatric gastroenterology and nutrition. 66:188-192; 2018.
Ohira, H., Fujioka, Y., Katagiri, C., Yano, M., Mamoto, R., Aoyama, M., et al. Butyrate enhancement of inteleukin-1β production via activation of oxidative stress pathways in lipopolysaccharide-stimulated THP-1 cells. Journal of clinical biochemistry and nutrition. 50:59-66; 2011.
Ohira, H., Fujioka, Y., Katagiri, C., Mamoto, R., Aoyama-Ishikawa, M., Amako, K., et al. Butyrate attenuates inflammation and lipolysis generated by the interaction of adipocytes and macrophages. Journal of atherosclerosis and thrombosis. 20:425-442; 2013.
Pacifico, L., Poggiogalle, E., Cantisani, V., Menichini, G., Ricci, P., Ferraro, F., Chiesa, C. Pediatric nonalcoholic fatty liver disease: A clinical and laboratory challenge. World journal of hepatology. 2:275; 2010.
Pahl, H. L. Activators and target genes of Rel/NF-κB transcription factors. Oncogene. 18:6853-6866; 1999.
Payne, A. N., Chassard, C., Zimmermann, M., Müller, P., Stinca, S., Lacroix, C. The metabolic activity of gut microbiota in obese children is increased compared with normal-weight children and exhibits more exhaustive substrate utilization. Nutrition & diabetes. 1:e12; 2011.
Peterson, C. M., Su, H., Thomas, D. M., Heo, M., Golnabi, A. H., Pietrobelli, A., Heymsfield, S. B. Tri-Ponderal Mass Index vs Body Mass Index in Estimating Body Fat During Adolescence. JAMA Pediatrics. 171:629-636; 2017.
Psichas, A., Sleeth, M. L., Murphy, K. G., Brooks, L., Bewick, G. A., Hanyaloglu, A. C., et al. The short chain fatty acid propionate stimulates GLP-1 and PYY secretion via free fatty acid receptor 2 in rodents. International journal of obesity. 39:424-429; 2015.
Rajilić–Stojanović, M., Biagi, E., Heilig, H. G., Kajander, K., Kekkonen, R. A., Tims, S., de Vos, W. M. Global and deep molecular analysis of microbiota signatures in fecal samples from patients with irritable bowel syndrome. Gastroenterology. 141:1792-1801; 2011.
Raso, G. M., Simeoli, R., Russo, R., Iacono, A., Santoro, A., Paciello, O., et al. Effects of sodium butyrate and its synthetic amide derivative on liver inflammation and glucose tolerance in an animal model of steatosis induced by high fat diet. PloS one. 8:e68626; 2013.
Säemann, M. D., Böhmig, G. A., Österreicher, C. H., Burtscher, H., Parolini, O., Diakos, C., et al. Anti‐inflammatory effects of sodium butyrate on human monocytes: potent inhibition of IL‐12 and up‐regulation of IL‐10 production. The FASEB Journal. 14:2380-2382; 2000.
Sarrabayrouse, G., Bossard, C., Chauvin, J. M., Jarry, A., Meurette, G., Quévrain, E., et al. CD4CD8αα lymphocytes, a novel human regulatory T cell subset induced by colonic bacteria and deficient in patients with inflammatory bowel disease. PLoS Biol. 12:e1001833; 2014.
Schreiber, S., Fedorak, R. N., Nielsen, O. H., Wild, G., Williams, C. N., Nikolaus, S., et al. Safety and efficacy of recombinant human interleukin 10 in chronic active Crohn's disease. Gastroenterology. 119:1461-1472; 2000.
Schwenger, K. J., Chen, L., Chelliah, A., Da Silva, H. E., Teterina, A., Comelli, E. M., et al. Markers of activated inflammatory cells are associated with disease severity and intestinal microbiota in adults with non alcoholic fatty liver disease. International journal of molecular medicine. 42:2229-2237; 2018.
Schwiertz, A., Taras, D., Schäfer, K., Beijer, S., Bos, N. A., Donus, C., Hardt, P. D. Microbiota and SCFA in lean and overweight healthy subjects. Obesity. 18:190-195; 2010.
Schwimmer, J. B., Deutsch, R., Kahen, T., Lavine, J. E., Stanley, C., Behling, C. Prevalence of Fatty Liver in Children and Adolescents. Pediatrics. 118:1388-1393; 2006.
Skinner, A. C., Ravanbakht, S. N., Skelton, J. A., Perrin, E. M., Armstrong, S. C. Prevalence of obesity and severe obesity in US children, 1999–2016. Pediatrics. 141:e20173459; 2018.
Smith, P. M., Howitt, M. R., Panikov, N., Michaud, M., Gallini, C. A., Bohlooly-Y, M., et al. The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis. Science. 341:569-573; 2013.
Sokol, H., Pigneur, B., Watterlot, L., Lakhdari, O., Bermúdez-Humarán, L. G., Gratadoux, J. J., et al. Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients. Proceedings of the National Academy of Sciences. 105:16731-16736; 2008.
Spruss, A., Kanuri, G., Uebel, K., Bischoff, S. C., Bergheim, I. Role of the inducible nitric oxide synthase in the onset of fructose-induced steatosis in mice. Antioxidants & redox signaling. 14:2121-2135; 2011.
Tedelind, S., Westberg, F., Kjerrulf, M., Vidal, A. Anti-inflammatory properties of the short-chain fatty acids acetate and propionate: a study with relevance to inflammatory bowel disease. World journal of gastroenterology. 13:2826-2832; 2007.
Usami, M., Kishimoto, K., Ohata, A., Miyoshi, M., Aoyama, M., Fueda, Y., Kotani, J. Butyrate and trichostatin A attenuate nuclear factor κB activation and tumor necrosis factor α secretion and increase prostaglandin E2 secretion in human peripheral blood mononuclear cells. Nutrition research. 28:321-328; 2008.
Vinolo, M. A., Rodrigues, H. G., Nachbar, R. T., Curi, R. Regulation of inflammation by short chain fatty acids. Nutrients. 3:858-876; 2011.
Wolever, T. M., Josse, R. G., Leiter, L. A., Chiasson, J. L. Time of day and glucose tolerance status affect serum short-chain fatty concentrations in humans. Metabolism. 46:805-811; 1997.
Yamaoka, M., Maeda, N., Nakamura, S., Kashine, S., Nakagawa, Y., Hiuge-Shimizu, A., et al. A pilot investigation of visceral fat adiposity and gene expression profile in peripheral blood cells. PLoS One. 7:e47377; 2012.
Yamaoka, M., Maeda, N., Nakamura, S., Mori, T., Inoue, K., Matsuda, K., et al. Gene expression levels of S100 protein family in blood cells are associated with insulin resistance and inflammation (peripheral blood S100 mRNAs and metabolic syndrome). Biochemical and biophysical research communications. 433:450-455; 2013.
Zaibi, M. S., Stocker, C. J., O’Dowd, J., Davies, A., Bellahcene, M., Cawthorne, M. A., et al. Roles of GPR41 and GPR43 in leptin secretory responses of murine adipocytes to short chain fatty acids. FEBS letters. 584:2381-2386; 2010.
Zhou, D., Pan, Q., Xin, F.Z., Zhang, R.N., He, C.X., Chen, G.Y., et al. Sodium butyrate attenuates high-fat diet-induced steatohepatitis in mice by improving gut microbiota and gastrointestinal barrier. World Journal of Gastroenterology. 23:60-75; 2017a.
Zhou, D., Pan, Q., Liu, X. L., Yang, R. X., Chen, Y. W., Liu, C., Fan, J. G. Clostridium butyricum B1 alleviates high-fat diet-induced steatohepatitis in mice via enterohepatic immunoregulation. Journal of Gastroenterology and Hepatology. 32:1640-1648; 2017b.
Zhou, D., Chen, Y. W., Zhao, Z. H., Yang, R. X., Xin, F. Z., Liu, X. L., et al. Sodium butyrate reduces high-fat diet-induced non-alcoholic steatohepatitis through upregulation of hepatic GLP-1R expression. Experimental & molecular medicine. 50:1-12; 2018.