簡易檢索 / 詳目顯示

研究生: 周彥伊
Chou, Yen-I
論文名稱: 鈀/磷化銦蕭特基二極體氫氣感測器之製備、 特性分析及感測研究
STUDIES ON FABRICATION, CHARACTERIZATION AND SENSING OF Pd/InP SCHOTTKY DIODE BASED HYDROGEN SENSORS
指導教授: 陳慧英
Chen, Huey-Ing
學位類別: 博士
Doctor
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 英文
論文頁數: 152
中文關鍵詞: 蕭特基二極體氫氣感測器磷化銦吸附等溫線無電鍍
外文關鍵詞: Schottky Diode, Hydrogen Sensor, Pd, InP, Adsorption Isotherm
相關次數: 點閱:106下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   結合鈀金屬之催化性質與二極體元件之微型化優勢,以鈀為氣敏閘極之蕭特基二極體氫氣感測器在微感測應用上相當具有發展潛力。在本論文中,吾人以無電鍍法製備高性能鈀/磷化銦蕭特基二極體作為氫氣感測器,進行鈀膜特性、蕭特基接面品質、電性整流能力、氫氣偵檢表現與氫氣吸附機制之研究分析。另外,將本感測元件與一般傳統蒸鍍所製備之鈀/磷化銦二極體相比較,以評估本感測元件之發展優勢。

      研究結果顯示,蕭特基接面品質受金屬閘極之鍍膜技術影響甚鉅,且強烈影響元件電性特性、氫氣偵檢表現,甚至氫氣吸附機制。由於無電鍍技術係屬一低溫低能之覆膜製程,經XPS與Raman量測分析發現,以無電鍍法所製備之鈀−磷化銦界面承受較少之應力與缺陷殘存,接面品質優於一般以蒸鍍法所製備者,因此可有效消除蕭特基異質接合之費米能階釘住效應,使無電鍍二極體具備較佳之電性整流特性,擁有較高之啟動電壓與較低之反向漏電流。以熱游離放射模式分析,無電鍍鈀/磷化銦二極體的確具有較高之蕭特基能障值(604 meV)及接合電阻值(340.1 Ohm cm-2),且其接面理想常數(1.01)較接近於1。另外,由SEM觀察可知,無電鍍鈀表面具較高的粗糙度,有利於氫氣檢測響應。

      另外,本研究以能量觀點出發,首次提出一論點來關聯界面氫原子之能量狀態與其所處蕭特基界面之完美程度。吾人發現,當界面品質愈佳時,其吸附之氫原子擁有較高之能量,根據此一能量論點可以反映界面品質,並提供另一評估蕭特基接合性質之方法。

      在氫氣感測性能方面,無電鍍二極體對氫氣呈現極佳之感測能力,擁有高靈敏度與寬廣偵檢範圍之特性,與蒸鍍元件相較,其性能更為優越。實驗結果顯示,本無電鍍元件所得氫氣偵檢範圍涵括3個濃度次方以上,其偵檢下限至少低於15 ppm H2/air、上限可達10000 ppm H2/air以上。在暫態響應方面,提高氫氣濃度與操作溫度可大幅增進響應速率,減少吸/脫附所需時間。以393 K下1000 ppm H2/air檢測為例,其響應時間僅需10秒且回復時間亦僅需約1分鐘。
    在氫氣感測機制方面,本文提出以氫氣吸附模式來描述感測之機制,並以Langmuir isotherm模式來描述氫氣於此二極體上之吸附行為。由感測時I-V電性關係分析發現,實驗結果與所提模式相吻合,據此可求出平衡時之各項熱力學參數。當操作溫度在303-343 K間,氫氣濃度範圍為50-1000 ppm時,可求出界面吸附反應之 與 分別為–89.2 kJ mol-1與–254.0 J mol-1K-1。另外,本文亦首次提出一解析閘極氫氣吸附座之模式,藉由Temkin isotherm分析發現,無電鍍鈀閘極上擁有較多之氫氣吸附座(約5.271012 m-2),因此較蒸鍍者(吸附座約7.231011 m-2)具較佳之氫氣/偵檢表現。另外,在吸附動力分析方面,吾人可以一階反應方程式成功描述氫氣於此鈀二極體上之初始吸附機制,並進一步求得在333-393 K間之吸附活化能為13.2 kJ mol-1。

      本研究中亦發現,氧氣對氫氣感測表現之靈敏度與初始響應速率均有明顯之抑制作用。當環境中含氧時,鈀膜上之表面反應愈形複雜,吸附之氧會與氫反應生成OH與H2O而消耗氫原子。因此,在高溫與高氫氣濃度下,二極體之感測靈敏度及初始響應速率會被抑制,且其暫態響應電流會發生異常下降之現象。關於氧涉入之反應機制及暫態響應之分析,尚待進一步探討。

      綜合以上得知,本文以無電鍍技術可製得高性能之鈀/磷化銦蕭特基二極體,其電性整流性能與氫氣檢測表現均極為優越。文中對於氫氣感測之機制及穩態、暫態之感測行為均獲得良好之解釋。此研究結果已為發展高性能二極體式氫氣感測器奠定良好之基礎,藉此研究亦可提供未來開發多功能感測器之參考。

     In combination of the catalytic property of Pd and the miniaturization advantage of electronic diode, the Pd Schottky diode hydrogen sensors have potentials for micro-sensing applications. In this dissertation, the electroless plating (EP) technique is employed to fabricate the high-performance Pd/InP Schottky diode as a hydrogen sensor. Studies on the EP Pd/InP sensor diode will be focused on the Pd film and Pd-InP interfacial property characterizations, I-V rectifying analysis, hydrogen sensing examination, and detection mechanism investigation. Moreover, the thermal evaporated (TE) Pd/InP diode is also employed for comparative study.

     Experimental results reveal that the junction quality of Pd-InP Schottky interface is strongly dependent upon the metal deposition technique, which can further influence the electric characteristics, hydrogen sensing performances as well as hydrogen adsorption mechanism. From the characterizations of XPS and Raman spectroscopy, it is indicated that the EP diode exhibits the superior interfacial quality with suffering less damages and stress than TE one. With the advantage of low-temperature deposition, the electroless plating can largely reduce the effect of Fermi-level pinning. Therefore, the studied EP diode exhibits the better I-V rectifying properties with higher turn-on voltage and lower reverse leakage currents than TE one. From the analysis of thermionic emission model, the EP Pd/InP diode really possesses the high Schottky barrier height (604 meV) and large contact resistance (340.1 Ohm cm-2). And the ideality factor (1.01) is closer to unity. In addition, from the SEM observation, it finds the EP Pd gate exhibits large roughness, which benefits to hydrogen detections.

     Besides, from the energy point of view, a correlation between the energetic state of interfacial hydrogen adsorbate and the junction quality of Schottky interface is first established. It is found that the hydrogen adsorbed at Schottky interfaces where perfect junction exhibited the higher energy state. This provides an indirect method to evaluate the junction qualities of Schottky interfaces.

     From the hydrogen-sensing performances, the EP Pd/InP diode exhibits the better detection capabilities with larger response, higher sensitivity and wider detectable regime than TE one. Experimental results indicate that the EP diode demonstrates the hydrogen detectable regime approximating more than 3 orders of concentration range less than 15 ppm and up to 10000 ppm H2/air. For transient detections, it is shown the EP diode presents the rapid responses to hydrogen. Both response and recovery rates can be speeded by increasing hydrogen concentration and operating temperature. For the 1000 ppm H2/air detection at 393 K, the EP the response time is only 10 sec, and the recovery time is in 1 minute for EP diode.

     From the hydrogen detection mechanisms, the Langmuir isotherm is employed to describe the hydrogen adsorption on EP Pd/InP Schottky diode. It also provides good correlations between theoretical and experimental results. For hydrogen detection of 50-1000 ppm H2/air at 303-343 K, the and values for hydrogen adsorption at EP Pd-InP interface are determined as –89.2 kJ mol-1 and –254.0 J mol-1K-1, respectively. Moreover, based on Temkin isotherm model, it further finds that EP Pd gate exhibits more available sites (5.271012 m-2) for hydrogen adsorption, which is responsible for its superior sensing performances over TE one (7.231011 m-2). For adsorption kinetic analysis, a 1st-order reaction is found giving good kinetic descriptions to the initial response of EP diode, and the activation energy is obtained as 13.2 kJ mol-1.

     In this work, it further finds the oxygen will strongly hinder the hydrogen detection on sensitivity and response rate. As the detection atmosphere contains oxygen, the surface reactions on Pd become rather complex. With the catalytic property of Pd gate, the oxygen will react with hydrogen for OH and H2O formations and thereby consumes the hydrogen. This will lead to an anomalous current decrease and slow initial response rate, especially at higher hydrogen concentration and higher operating temperature. The hydrogen adsorption involving the reactions with oxygen is needed to be further investigated.
    In conclusion, as can be seen, the electroless plating technique can fabricate the Schottky interface with high junction quality for excellent electric rectifying property and hydrogen sensing performances. This study has provided the well investigations into the detection mechanisms as well as steady-state and transient-state hydrogen sensing performances. Based on the high-performance Schottky diode hydrogen sensor, it can be further developed the multi-functional sensor system.

    摘 要 ABSTRACT ACKNOWLEDGEMENT LIST OF CONTENTS…………………………………………………………… I LIST OF TABLES……………………………………………………………… IV LIST OF FIGURES……………………………………………………………… VI LIST OF SYMBOLS…………………………………………………………… X CHAPTER 1 INTRODUCTION……………………………………………………… 1 1.1. Hydrogen sensor introduction……………………………………… 1 1.1.1. Sensor definition and requirements…………………………… 1 1.1.2. Category of hydrogen sensors…………………………………… 2 1.1.3. Trends for chemical sensing technology……………………… 6 1.2. Backgrounds for Schottky hydrogen-sensitive diode development…………………………………………………………… 7 1.2.1. Origin and invention……………………………………………… 7 1.2.2. Device structure improvement…………………………………… 8 1.2.3. Fabrication technique improvement…………………………… 11 1.3. Motivations and objective.………………………………………… 13 1.4. Organization…………………………………………………………… 13 CHAPTER 2 EXPERIMENTAL DETAILS…………………………………………… 20 2.1. Chemicals and materials…………………………………………… 20 2.2. Apparatus and measurements………………………………………… 23 2.3. Design and fabrication of Schottky diode devices…………… 25 2.3.1. Device structure…………………………………………………… 25 2.3.2. Device fabrication………………………………………………… 25 2.4. Hydrogen sensing measurements………………………………………28 2.4.1. System set up…………………………………………………………28 2.4.2. Hydrogen sensing experiments…………………………………… 29 2.4.3. Measurement uncertainty……………………………………………30 CHAPTER 3 CURRENT-VOLTAGE (I-V) CHARACTERISTICS…………………… 34 3.1. Electron transportation at Schottky interface…………………34 3.2.1. Schottky junction formation………………………………………34 3.2.2. Thermionic emission model……………………………………… 36 3.2. Non-ideal Schottky interface……………………………………… 38 3.3. Analysis on electroless plated Pd/InP Schottky diode……… 40 3.3.1. Pd film and Pd-InP interface characterizations…………… 40 3.3.2. I-V rectification analysis……………………………………… 43 3.3.3. Comparisons between electroless plated and thermal evaporated Schottky diodes……………………………………… 45 3.4. Conclusion……………………………………………………………… 46 CHAPTER 4 HYDROGEN DETECTION PERFORMANCES…………………………… 56 4.1. Hydrogen detection mechanisms…………………………………… 56 4.2. Steady-detection performances………………………………………57 4.2.1. I-V modulations………………………………………………………57 4.2.2. Schottky barrier height and ideality factor…………………58 4.2.3. Relative Sensitivity……………………………………………… 61 4.3. Transient-detection performances………………………………… 63 4.3.1. I-t responses…………………………………………………………63 4.3.2. Response and recovery………………………………………………64 4.4. Conclusion……………………………………………………………… 66 CHAPTER 5 ADSORPTION KINETICS………………………………………………77 5.1. Equilibrium adsorption analysis…………………………………… 77 5.1.1. Langmuir isotherm analysis…………………………………… 77 5.1.2. Enthalpy and entropy of hydrogen adsorption……………… 84 5.1.3. Schottky interface property vs. energy states of hydrogen adsorbates……………………………………………………………86 5.2. Kinetic adsorption analysis……………………………………………87 5.2.1. Rate expression for hydrogen detection………………………87 5.2.2. Estimation of activation energy……………………………… 89 5.3. Conclusion………………………………………………………………… 90 CHAPTER 6 OXYGEN-HINDERING EFFECT ON HYDROGEN TRANSIENT DETECTION……………………………………………………………… 98 6.1. Anomalous sensing behaviors on transient detection………………98 6.2. Oxygen-hindering effect………………………………………………… 100 6.3. Initial response rate…………………………………………………… 103 6.4. Conclusion………………………………………………………………… 106 CHAPTER 7 SUMMARY………………………………………………………………… 116 CHAPTER 8 FURTHER INVESTIGATIONS…………………………………………… 120 REFERENCES……………………………………………………………………………123 APPENDIX A………………………………………………………………………… 141 APPENDIX B……………………………………………………………………………144 VITA……………………………………………………………………………………148 PUBLICATION LIST……………………………………………………………………148

    1.R. C. Weast, “Handbook of Chemistry and Physics,” p. F-35, Cleveland: CRC press (1976).
    2.T. M. Canh, “Biosensors,” ch 1, London: Champman & Hall (1993).
    3.L. Ristic, “Sensor technology and devices,” ch 1, Boston: Artech House (1994).
    4.W. Göpel, J. Hesse, and J. N. Zemel, “Sensors,” vol. 1, ch 10, Weinheim: VCH press (1991).
    5.A. Mandelis and C. Christofides, “Physics, chemistry and technology of solid state gas sensor devices,” ch 3, New York: John Wily & Sons (1993).
    6.C. C. Liu, pp. J. Hesketh, and G. W. Hunter, “Chemical microsensors,” Interface, pp. 22-27, 13(2), 2004.
    7.I. Lundström, S. Shivaraman, C. Svensson, and L. Lundkvist, “A hydrogen-sensitive MOS field-effect transistor,” Appl. Phys. Lett., 26, pp. 55-57, 1975.
    8.I. Lundström, M. S. Shivaraman, and C. M. Svensson, “A hydrogen-sensitive Pd-gate MOS transistor,” J. Appl. Phys., 26(9), pp. 3876-3881, 1975.
    9.H. M. Dannetun, L. G. Petersson, D. Söderberg, and I. Lundström, “A hydrogen sensitive Pd-MOS structure working over a wide pressure range,” Appl. Surf. Sci., 17, pp. 259-264, 1984.
    10.S. Yamauchi, “Chemical sensor technology,” vol. 4, p. 20, Tokyo: Kodansha (1992).
    11.N. Yamazoe, J. Fuchigami, M. Kishikawa, and T. Seiyama, “Interaction of tin oxide surface with O2, H2O, and H2,” Surf. Sci., 86, pp. 335-344, 1979.
    12.N. Yamazoe, Y. Kurokawa, and T. Seiyama, “Hydrogen sensitive gas detector using silver added tin(IV) oxide,” Chem. Lett., 12, pp.1899-1902, 1982.
    13.U. S. Choi, G. Sakai, K. Shimanoe, and N. Yamazoe, “Sensing properties of SnO2-Co3O4 composites to CO and H2,” Sens. Actuator B-Chem., 98(2-3), pp. 166-173, 2004.
    14.N. Taguchi, Japan Patent 45-38200 (applied in 1962).
    15.Y. Shimizu, F. C. Lin, Y. Takao, and M. Egashira, “Zinc oxide varistor gas sensors: II, effect of chromium (III) oxide and yttrium oxide additives on the hydrogen-sensing properties,” J. Am. Ceram. Soc., 81(6), pp. 1633-1643, 1998.
    16.S. Basu, and A. Dutta, “Modified heterojunction based on zinc-oxide thin-film for hydrogen gas-sensor application,” Sens. Actuator B-Chem., 22(2), pp. 83-87, 1994.
    17.Y. Tan, T. C. Tan, “Sensitive behavior of an amperometric hydrogen sensor—theoretical modeling and experimental verification,” J. Electrochem. Soc., 142(6), pp. 1923-1929, 1995.
    18.K. Ding and W. E. Seyfried, “Gold as a hydrogen sensing electrode for in situ measurement of dissolved H2 in supercritical aqueous fluid,” J. Solut. Chem., 25(5), pp. 421-433, 1996.
    19.E. Di Bartolomeo, N. Kaabbuathong, M. L. Grilli, and E. Traversa, “Planar electrochemical sensors based on tape-cast YSZ layers and oxide electrodes,” Solid State Ion., 171(3-4), pp. 173-181, 2004.
    20.S. H. Feng, and M. Greenblatt, “Proton conductivity and humidity-sensing properties at high-temperature of the NASICON-based composite material HZr2P3O12-ZrP2O7,” Chem. Mat., 5(9), pp. 1277-1282, 1993.
    21.N. Maffei and A. K. Kuriakose, “A hydrogen sensor based on a hydrogen ion conducting solid electrolyte,” Sens. Actuator B-Chem., 56(3), pp. 243-246, 1999.

    22.N. Maffei and A. K. Kuriakose, “A solid-state potentiometric sensor for hydrogen detection in air,” Sens. Actuator B-Chem., 98(1), pp. 73-76, 2004.
    23.S. S. Jan, T. C. Chen, J. C. Chou, pp. J. Jan, C. C. Cheng, “Preparation and properties of hydrogen ion-sensitive field effect transistors with sol-gel-derived Mg-modified lead titanate gate,” J. Non-Cryst. Solids, 332(1-3), pp. 11-19, 2003.
    24.Y. C. Chen, S. S. Jan, and J. C. Chou, “Temperature effects on the characteristics of hydrogen ion-sensitive field-effect transistors with sol-gel-derived lead titanate gates,” Anal. Chim. Acta, 516(1-2): 43-48, 2004.
    25.W. Göpel, J. Hesse, and J. N. Zemel, “Sensors,” vol. 2, ch 11, Weinheim: VCH press (1991).
    26.G. Hoogers, R Huck, D. Kohl, and G. Heiland, “The uptake of oxygen by noble-metal clusters on gas sensors,” Sens. Actuator B-Chem., 9(2), pp. 123-125, 1992.
    27.V. R. Katti, A. K. Debnath, S. C. Gadkari, S. K. Gupta, and V. C. Sahni, “Passivated thick film catalytic type H2 sensor operating at low temperature,” Sens. Actuator B-Chem., 84(2-3), pp. 219-225, 2002.
    28.M. Krawczyk, and J. Namiesnik, “Application of a catalytic combustion sensor (Pellistor) for the monitoring of the explosiveness of a hydrogen-air mixture in the upper explosive limit range,” J. Autom. Methods Manag. Chem., 25(5), pp. 115-122, 2003.
    29.S. Middelhoek and S. A. Audet, “Silicon sensors,” ch 1, New York: Academic Press (1989).
    30.R. S. Muller, R. T. Howe, S. D. Senturia, R. L. Smith, and R. M. White, “Microsensors,” pp. 1-36, New York: IEEE Press (1991).
    31.S. M. Sze, “Semiconductor sensors,” ch 1, New York: John Wily & Sons (1994).
    32.G. Alefeld and J. Völkl, “Hydrogen in metals I – basic properties,” ch 12, Berlin; Springer-Verlag (1978).
    33.G. Alefeld and J. Völkl, “Hydrogen in metals II ― Application-oriented properties ,” ch 3, Berlin: Springer-Verlag (1978).
    34.M. C. Steele and B. A. Maciver, “Palladium-cadmium sulfide Schottky diodes for hydrogen detection,” Appl. Phys. Lett., 28(11), pp. 687-688, 1976.
    35.K. Ito, “Hydrogen-sensitive Schottky-barrier diodes,” Surf. Sci., 86, pp. 345-352, 1979.
    36.K. Ito, “Hydrogen detector utilizing metal-semiconductor contacts,” Jpn. J. Appl. Phys., 20(10), L753-L756, 1981.
    37.M. S. Shivaraman, I. Lundström, C. Svensson, and H. Hammarsten, “Hydrogen sensitivity of palladium-thin oxide-silicon Schottky barriers,” Electron. Lett., 12(18), pp.483-484, 1976.
    38.P. F. Ruths, S. Ashok, S. J. Fonash, and J. M. Ruths, “A study of Pd/Si MIS Schottky barrier diode hydrogen detector,” IEEE Trans. Electron Devices, 28(9), pp. 1003-1009, 1981.
    39.M. C. Steele, J. W. Hile and B. A. Maciver, “Hydrogen-sensitive palladium gate MOS capacitors,” J. Appl. Phys., 47(6), pp. 2537-2538, 1976.
    40.I. Lundström, M. S. Shivaraman, and C. Svensson, “Chemical reactions on palladium surface studied with Pd-MOS structures,” Surf. Sci., 64(2), pp. 497-519, 1977.
    41.I. Lundström, M. S. Shivaraman, and C. M. Svensson, “Hydrogen-sensitive Pd-gate MOS transistor,” J. Appl. Phys., 46(9), pp. 3876-3881, 1975.
    42.I. Lundström, M. S. Shivaraman, L. Stiblert and C. M. Svensson, “Hydrogen in smoke detected by Pd-gate field-effect transistor,” Rev. Sci. Instrum., 47(6), pp. 738-740, 1976.
    43.I. Lundström, M. S. Shivaraman, and C. M. Svensson, “Hydrogen sensitive MOS structures,” Vacuum, 27(4), pp. 245-247, 1977.
    44.A. A. Saaman and pp. Bergveld, “A classification of chemically sensitive semiconductor devices,” Sens. Actuator B-Chem., 7(2), pp. 75-87, 1985.
    45.M. Armgarth and C. Nylander, “A stable hydrogen-sensitive Pd gate metal-oxide semiconductor capacitor,” Appl. Phys. Lett., 39(1), pp. 91-92, 1981.
    46.M. Armgarth, D. Söderberg, and I. Lundström, “Palladium and platinum gate metal-oxide-semiconductor capacitors in hydrogen and oxygen mixtures,” Appl. Phys. Lett., 41(7), pp. 654-655, 1982.
    47.M. Armgarth and C. Nylander, “Blister formation in Pd gate MIS hydrogen sensors,” IEEE Electron Device Lett., 3(12), pp. 384-386, 1982.
    48.C. Nylander, M. Armgarth, and C. Svensson, “Hydrogen induced drift in palladium gate metal-oxide-semiconductor substrates,” J. Appl. Phys., 56(4), pp. 1177-1188, 1984.
    49.T. L. Poteat, B. Lalevič, B. Kuliyev, M. Yousuf, and M. Chen, “MOS and Schottky diode gas sensors using transition metal electrodes,” J. Electron. Mater., 12(1), pp. 181-214, 1983.
    50.T. L. Poteat and B. Lalevič, “Pd-MOS hydrogen and hydrocarbon sensor device,” IEEE Electron Device Lett., 2(4), pp. 82-84, 1981.
    51.T. L. Poteat and B. Lalevič, “Transition metal-gate MOS gaseous detectors,” IEEE Trans. Electron Devices, 29(1), pp. 123-129, 1982.
    52.U. Ackelid, M. Armgarth, A. Spetz, and I. Lundström, “Ethanol sensitivity of palladium-gate metal-oxide-semiconductor structures,” IEEE Electron Device Lett., 7(6), pp. 353-355, 1986.
    53.I. Lundström, A. Spetz, F. Winquist, U. Ackelid, and H. Sundgren, “Catalytic metals and field-effect devices — a useful combination,” Sens. Actuator B-Chem., 1(1-6), pp. 15-20, 1990.
    54.F. Winquist, A. Spetz, M. Armgarth, M. Armgarth, and B. Danielsson, “Biosensors based on ammonia sensitive metal-oxide-semiconductor structures,” Sens. Actuator B-Chem., 8(2), pp. 91-100, 1985.
    55.I. Lundström, M. Armgarth, A. Spetz, and F. Winquist, “Gas sensors based on catalytic metal-gate field-effect devices,” Sens. Actuator B-Chem., 10(3-4), pp. 399-421, 1986.
    56.T. C. McGill, “Phenomenology of metal-semiconductor electrical barriers,” J. Vac. Sci. Technol., 11(6), pp. 935-942, 1974.
    57.L. pp. Tongson, B. E. Knox, T. E. Sullivan, and S. J. Fonash, “Comparative study of chemical and polarization characteristics of Pd/Si and Pd/SiOx/Si Schottky-barrier-type devices,” J. Appl. Phys., 50(3), pp. 1535-1537, 1979.
    58.S. T. Pantelides, “The physics and SiO2 and its interface,” New York: Pergamon (1978).
    59.M. C. Petty, “Hydrogen-induced DLTS signal in Pd/normal-Si Schottky didoes,” Electron. Lett., 18(8), pp. 314-316, 1982.
    60.M. C. Petty, “Conduction mechanism in Pd/SiO2/n-Si Schottky didoe hydrogen detectors,” Solid-State Electron., 29(1), pp. 89-97, 1986.
    61.D. X. Dai and I Dvoli, “ Experimental study of an interface reaction at the practical Pd/Si interface by XPS,” Vacuum, 46(2), pp. 139-142, 1995.
    62.K. Homma, T. Koike, S. Ando, K. Adachi, and M. Motohashi, “Interfacial reaction and silicide formation in Pd/a-Si:H layered films,” Electronics & Communications in Japan, Part II: Electronics, 80(3), pp. 12-22, 1997.
    63.M. C. Steele and B. A. MacIver, “Palladium/cadmium-sulfide Schottky diodes for hydrogen detection,” Appl. Phys. Lett., 47(11), pp. 687-688, 1976.
    64.N. Yamamoto, S. Tonomura, T. Matsuoka, and H. Tsubomura, “A study on a palladium-titanium oxide Schottky diode as a detector for gaseous components,” Surf. Sci., 92(2-3), pp. 400-406, 1980.
    65.H. Kobayashi, K. Kishimoto, and Y. Nakato, “Reactions of hydrogen at the interface of palladium-titanium dioxide Schottky diodes as hydrogen sensors, studied by workfunction and electrical characteristic measurements,” Surf. Sci., 306(3), pp. 393-405, 1994.
    66.H. Y. Nie and Y. Nannichi, “Pd-on-GaAs Schottky contact—its barrier height and response to hydrogen,” Jpn. J. Appl. Phys., Part 1, 30(5), pp. 906-913, 1991.
    67.W. pp. Kang and Y. Gürbüz, “Comparison and analysis of Pd- and Pt-GaAs Schottky diodes for hydrogen detection,” J. Appl. Phys., 75(12), pp. 8175-8181, 1994.
    68.M. Jaegle and K Steiner, “Gas-sensitive GaAs-MESFETs,” Sens. Actuator B-Chem., 34(1-3), pp. 543-547, 1996.
    69.W. C. Liu, H. J. Pan, H. I. Chen, K. W. Lin, and C. K. Wang, “Comparative hydrogen-sensing study of Pd/GaAs and Pd/InP metal-oxide-semiconductor Schottky diodes,” Jpn. J. Appl. Phys., Part 1, 40(11), pp. 6254-6259, 2001.
    70.S. Y. Cheng, “A hydrogen sensitive Pd/GaAs Schottky diode sensor,” Mater. Chem. Phys.,78(2), pp. 525-528, 2003.
    71.M. Yousuf, B. Kuliyev, B. Lalevič, and T. L. Poteat, “Pd-InP Schottky diode hydrogen sensors,” Solid-State Electron., 25(8), pp. 753-758, 1982.
    72.S. V. Slobodchikov, A. V. Pentsov, G. G. Kovalevskaya, M. M. Meredov, “Photodetector for hydrogen and water-vapor,” Sens. Actuator A-Phys., 33(1-2), pp. 115-117, 1992.
    73.W. C. Liu, H. J. Pan, H. I. Chen, K. W. Lin, S. Y. Cheng, and K. H. Yu, “Hydrogen-sensitive characteristics of a novel Pd/InP MOS Schottky diode hydrogen sensor,” IEEE Trans. Electron Devices, 48(9), pp. 1938-1944, 2001.
    74.H. J. Pan, K. W. Lin, K. H Yu, C. C. Cheng, K. B. Thei, W. C. Liu, and H. I. Chen, “Highly hydrogen-sensitive Pd/InP metal oxide-semiconductor Schottky diode hydrogen sensor,” Electron. Lett., 38(2), pp. 92-94, 2002.
    75.L. Talazac, F. Barbarin, L. Mazet, and C. Varenne, “Improvement in sensitivity and selectivity of InP-based gas sensors pseudo-Schottky diodes with palladium metallizations,” IEEE Sens. J., 4(1), pp. 45-51, 2004.
    76.K. W. Lin, H. I. Chen, C. T. Lu, Y. Y. Tsai, H. M. Chuang, C. Y. Chen, and W. C. Liu, “A hydrogen sensing Pd/InGaP metal-semiconductor (MS) Schottky diode hydrogen sensor,” Semicond. Sci. Technol., 18 (7), pp. 615-619, 2003.
    77.Y. Y. Tsai, K. W. Lin, H. I. Chen, C. T. Lu, H. M. Chuang, C. Y. Chen, and W. C. Liu, “Comparative hydrogen sensing performances of Pd- and Pt-InGaP metal-oxide-semiconductor Schottky diodes,” J. Vac. Sci. Technol. B, 21(6), pp. 2471-2477, 2003.
    78.K. W. Lin, H. I. Chen, H. M. Chuang, C. Y. Chen, C. T. Lu, C. C. Cheng, and W. C. Liu, “Characteristics of Pd/InGaP Schottky diodes hydrogen sensors,” IEEE Sens. J., 4(1), pp. 72-79, 2004.
    79.Y. Y. Tsai, K. W. Lin, C. T. Lu, H. I. Chen, H. M. Chuang, C. Y. Chen, C. C. Chen, and W. C. Liu, “Investigation of hydrogen-sensing properties of Pd/AlGaAs-based Schottky diodes,” IEEE Trans. Electron Devices, 50(12), pp. 2532-2539, 2003.
    80.C. C. Chen, Y. Y. Tsai, K. W. Lin, H. I. Chen, C. T. Lu, and W. C. Liu, “Hydrogen sensing characteristics of a Pt-oxide-Al0.3Ga0.7As MOS Schottky diode,” Sens. Actuator B-Chem., 99(2-3), pp. 425-430, 2004.
    81.M. pp. Sinha and S. Mahapatra, “Diffusion of Pd in GaAs,” Vacuum, 40(1-2), pp.239, 1990.
    82.G. Stremsdoerfer, D. Nguyen, N. Jaffrezic-Renault, J. R. Martin, and pp. Clechet, “Contact reactions in Pd/n-GaAs junctions formed by palladium electroless deposition,” J. Electrochem. Soc., 140(2), pp. 519-525, 1993.
    83.T. S. Huang and J. G. Pang, “Thermal stability of the Pd-Al alloy Schottky contacts to n-GaAs,” Mater. Sci. Eng. B, 49(2), pp. 144-151, 1997.
    84.H. Iwakuro, S. Tamaki, D. H. Shen, Z. Lin, and T. Kuroda, “Interfacial reactions of Pd and Pd/Si on GaAs,” Phys. Status Solidi A-Appl. Res., 164(2), pp. 757-765, 1997.
    85.H. Iwakuro, T. Kuroda, D. H. Shen, and H. Yagi, “Interactions of thin films of Pd and Pd/Si on GaAs: An X-ray photoelectron spectroscopic study combined with a thermodynamic analysis,” J. Mater. Sci., 33(2), pp. 379-384, 1998.
    86.G. W. Hunter, pp. G. Neudeck, L. Y. Chen, D. Knight, C. C. Liu, and O. H. Wu, “Silicon carbide-based detection of hydrogen and hydrocarbons,” Silicon carbide and related materials, 142, pp. 817-820, 1996.
    87.L. Y. Chen, G. W. Hunter, pp. G. Neudeck, G. Bansal, J. B. Petit, and D. Knight, “Comparison of interfacial and electronic properties of annealed Pd/SiC and Pd/SiO2/SiC Schottky diode sensors,” J. Vac. Sci. Technol. A, 15(3), pp. 1228-1234, 1997.
    88.C. K. Kim, J. H. Lee, Y. H. Lee, N. I. Cho, D. J. Kim, and W. pp. Kang, “Hydrogen sensing characteristics of Pd-SiC Schottky diode operating at high temperature,” J. Electron. Mater., 28(3), pp. 202-205, 1999.
    89.C. K. Kim, J. H. Lee, S. M. Choi, I. H. Noh, H. R. Kim, N. I. Cho, C. Hong, and G. E. Jang, “Pd- and Pt-SiC Schottky diodes for detection of H2 and CH4 at high temperature,” Sens. Actuator B-Chem., 77(1-2), pp. 455-462, 2001.
    90.F. Serina, K. Y. S. Ng, C. Huang, G. W. Auner, L. Rimai, and R. Naik, “Pd/AlN/SiC thin-film devices for selective hydrogen sensing,” J. Appl. Phys., 79(20), pp. 3350-3352, 2001.
    91.S. Roy, C. Jacob, C. Lang, and S. Basu, “Studies on Ru/3C-SiC Schottky junctions for high temperature hydrogen sensors,” J. Electrochem. Soc., 150(6), pp. H135-H139, 2003.
    92.S. Roy, C. Jacob, C. Lang, and S. Basu, “Studies on Pd/3C-SiC Schottky junction hydrogen sensors at high temperature,” Sens. Actuator B-Chem., 94(3), pp. 298-303, 2003.
    93.B. pp. Luther, S. D. Wolter, and S. E. Mohney, “High temperature Pt Schottky diode gas sensors on n-type GaN,” Sens. Actuator B-Chem., 56(1-2), pp. 164-168, 1999.
    94.J. Kim, F. Ren, B. pp. Gila, C. R. Abernathy, and S. J. Pearton, “Reversible barrier height changes in hydrogen-sensitive Pd/GaN and Pt/GaN diodes,” J. Appl. Phys., 82(5), pp. 739-741, 2003.
    95.J. Kim, B. pp. Gila, G. Y. Chung, C. R. Abernathy, S. J. Pearton, and F. Ren, “Hydrogen-sensitive GaN Schottky diodes,” Solid-State Electron., 47(6), pp. 1069-1073, 2003.
    96.O. Weidemann, M. Hermann, G. Steinhoff, H. Wingbrant, A. L. Spetz, M. Stutzmann, and M. Eickhoff, “Influence of surface oxides on hydrogen-sensitive Pd : GaN Schottky diodes,” Appl. Phys. Lett., 83(4), pp. 773-775, 2003.
    97.Y. M. Wong, W. pp. Kang, J. L. Davidson, A. Wisitsora-at, and K. L. Soh, “A novel microelectronic gas sensor utilizing carbon nanotubes for hydrogen gas detection,” Sens. Actuator B-Chem., 93(1-3), pp. 327-332, 2003.
    98.K. Dobos, M. Armgerth, G. Zimmer, I. Lundström, “The influence of different insulators on palladium-gate metal-insulator-semiconductor hydrogen sensors,” IEEE Trans. Electron Devices, 31(4), pp. 508-510, 1984.
    99.R. C. Huges, “Hydrogen sensitive Schottky diodes with Pd/Ag alloys,” J. Electrochem. Soc., 31(4), pp. C322-C322, 1984.
    100.L. M. Lechuga, A. Calle, D. Golmayo, pp. Tejedor, and F. Briones, “A new hydrogen sensor based on a Pt/GaAs Schottky diode,” J. Electrochem. Soc., 138(1), pp. 159-162, 1991.
    101.L. M. Lechuga, A. Calle, D. Golmayo, and F. Briones, “Hydrogen sensor based on a Pt/GaAs Schottky diode,” Sens. Actuator B-Chem., 4(3-4), pp. 551-558, 1991.
    102.A. Ortiz, S. Lopez, J. C. Alonso, and S. Muhl, “Hydrogen-sensitive Ni-SiO2 a-Si-H Schottky diodes,” Thin Solid Films, 207(1-2), pp. 279-282, 1992.
    103.H. Nienhaus, H. S. Bergh, B. Gergen, A. Majumdar, W. H. Weinberg, and E. V. McFarland, “Ultrathin Cu films on Si(111): Schottky barrier formation and sensor applications,” J. Vac. Sci. Technol. A, 17(4), pp. 1683-1687, 1999.
    104.H. Nienhaus, H. S. Bergh, B. Gergen, and A. Majumdar, W. H. Weinberg, and E. V. McFarland, ”Selective H atom sensors using ultrathin Ag-Si Schottky diodes,” Appl. Phys. Lett., 74(26), pp. 4046-4048, 1999.
    105.J. Liu, G. R. Oritz, Y. Zhang, H. Bakhru, and J. W. Corbett, “Effects of hydrogen on the barrier height of a titanium Schottky didoe on p-type silicon,” Phys. Rev. B, 44(16), pp. 8918-8922, 1991.
    106.S. X. Jin, L. pp. Wang, M. H. Yuan, J. J. Chen, Y. Q. Jia, and G. G. Jia, “Effects of hydrogen on the Schottky-barrier of Ti/n-GaAs diodes,” J. Appl. Phys., 71(1), pp. 536-538, 1992.
    107.L. M. Lechuga, A. Calle, D. Golmayo, and F. Briones, “Different catalytic metals (Pt, Pd and Ir) for GaAs Schottky-barrier sensors,” Sens. Actuator B-Chem., 7(1-3), pp. 614-618, 1992.
    108.S. Roy, C. Jacob, C. Lang, and S. Basu, “Studies on Ru/3C-SiC Schottky junctions for high temperature hydrogen sensors,” J. Electrochem. Soc., 150(6), pp. H135-H139, 2003.
    109.Y. Q. Jia and G. G. Qin, “Effects of hydrogen on Al/p-Si Schottky diodes,” Appl. Phys. Lett., 56(7), pp. 641-643, 1990.
    110.D. E. Aspnes and A. Heller, “Barrier height and leakage reduction in n-GaAs -platinum group metal Schottky barriers upon exposure to hydrogen,” J. Vac. Sci. Technol. B, 1(3), pp. 602-607, 1983.
    111. H. Hasegawa, “Fermi level pinning and Schottky barrier height control at metal-semiconductor interfaces of InP and related materials,” Jpn. J. Appl. Phys., Part 1, 38(2B), pp. 1098-1102, 1999.
    112.Z. Q. Shi and W. A. Anderson, “MIS diodes on n-InP having an improved interface,” Solid-State Electron., 34(3), pp. 285-289, 1991.
    113.J. Kolnik, J. Ivanco, and M Ozvold, “Metal thin insulator silicon Schottky diodes with plasma deposited silicon-nitride interfacial layer,” Phys. Status Solidi A-Appl. Res., 130(1), pp. 245-251, 1992.
    114.J. Kolnik, J. Ivanco, M Ozvold, F. Wyczisk, and J. Olivier, “Increased thermal-stability of Au/GaAs metal-insulator-semiconductor Schottky diodes with silicon-nitride interfacial layer deposition by remote plasma-enhanced chemical-vapor deposition,” J. Appl. Phys., 73(10), pp. 5075-5080, 1993.
    115.T. Sugimura, T. Tsuzuku, T. Katsui, Y. Kasai, T. Inokuma, S. Hashimoto, K. Iiyama, and S. Takamiya, “A preliminary study of MIS diodes with nm-thin GaAs-oxide layers,” Solid-State Electron., 43(8), pp. 1571-1576, 1999.
    116.G. Eftekhari, “Electrical characteristics of selenium-treated GaAs MIS Schottky diodes,” Semicond. Sci. Technol., 8(3), pp. 409-411, 1993.
    117.G. Eftekhari, “Effects of sulfur passivation and rapid thermal annealing on the electrical-properties of InP metal-insulator-semiconductor Schottky diodes,” Phys. Status Solidi A-Appl. Res., 161(2), pp. 571-576, 1997.
    118.J. X. Sun, D. J. Seo, W. L. O’brien, F. J. Himpsel, A. B. Ellis, and T. F. Kuech, “Chemical bonding and electronic properties of SeS2-treated GaAs(100),” J. Appl. Phys., 85(2), pp. 969-977, 1999.
    119.M. G. Kang and H. H. Park, “The effective control of Pd/GaAs interface by sulfidation and thermal hydrogenation,” Jpn. J. Appl. Phys., Part 1, 40(7), pp. 4454-4457, 2001.
    120.L. He, X. J. Wang, and R. Zhang, “Enhanced electrical performance of Au/n-GaN Schottky diodes by novel processing,” J. Vac. Sci. Technol. A, 17(4), pp. 1217-1220, 1999.
    121.J. S. Herman and F. L. Terry, “Plasma passivation of gallium-arsenide,” J. Vac. Sci. Technol. A, 11(4), pp. 1094-1098, 1993.
    122.Y. G. Wang and S. Ashok, “A study of metal GaAs interface modification by hydrogen plasma,” J. Appl. Phys., 75(5), pp. 2447-2454, 1994.
    123.A. Petit, C. Robert-Goumet, L. Bideux, B. Gruzza, Z. Benamara, N. B. Bouiadjra, and V. Matolin, “Auger electronic spectroscopy and electrical characterisation of InP(100) surfaces passivated by N2 plasma,” Appl. Surf. Sci., 234(1-4), pp. 451-456, 2004.
    124.N. J. Wu, T. Hashizume, and H. Hasegawa, “Formation of oxide-free nearly ideal Pt/GaAs Schottky barriers by novel in-situ photopluse-asisted electrochemical process,” Jpn. J. Appl. Phys., Part 1, 33(1B), pp. 936-941, 1994.
    125.T. Hashizume, G. Schweeger, N. J. Wu, and H. Hasegawa, “Novel in-situ electrochemical technology for formation of oxide-free and defect-free Schottky contact to GaAs and related low-dimensional structures,” J. Vac. Sci. Technol. B, 12(4), pp. 2660-2666, 1994.
    126.N. J. Wu, T. Hashizume, H. Hasegawa, and Y. Amemiya, “Schottky contacts on n-InP with high barriers and reduced Fermi-level pinning by a in-situ electrochemical process,” Jpn. J. Appl. Phys., Part 1, 34(2B), pp. 1162-1167, 1995.
    127.S. Uno, T. Hashizume, S. Kasai, N. J. Wu, and H. Hasegawa, “0.86 eV platinum Schottky barrier on indium phosphide by in situ electrochemical process and its application to MESFETs,” Jpn. J. Appl. Phys., Part 1, 35(2B), pp. 1258-1263, 1996.
    128.H. Hasegawa, T. Sato, and T. Hashizume, “Evolution mechanism of nearly pinning-free platinum/n-type indium phosphide interface with a high Schottky barrier height by in situ electrochemical process,” J. Vac. Sci. Technol. B, 15(4), pp. 1227-1235, 1997.
    129.T. Sato, S. Uno, T. Hashizume, and H. Hasegawa, “Title: Large Schottky barrier heights on indium phosphide-based materials realized by in-situ electrochemical process,” Jpn. J. Appl. Phys., Part 1, 36(3B), pp. 1811-1817, 1997.
    130.T. Sato, C. Kaneshiro, and H. Hasegawa, “The strong correlation between interface microstructure and barrier height in Pt/n-InP Schottky contacts formed by an in situ electrochemical process,” Jpn. J. Appl. Phys., Part 1, 38(2B), pp. 1103-1106, 1999.
    131.H. Hasegawa and H. Ohno, “Unified disorder induced gap state model for insulator-semiconductor and metal-semiconductor interfaces,” J. Vac. Sci. Technol. B, 4(4), pp. 1130-1138, 1986.
    132.Y. I Chou, “Study on fabrication of palladium Schottky diode hydrogen sensors by electroless plating,” master thesis, Department of Chemical Engineering, National Cheng Kung University, Taiwan, 2001.
    133.H. I. Chen, W. C. Liu, Y. I Chou, C. Y. Chu, and H. J. Pan, “Process for preparing a hydrogen sensor,” Taiwan Patent. 138042 (2001).
    134.H. I. Chen, W. C. Liu, Y. I Chou, C. Y. Chu, and H. J. Pan, “Process for preparing a hydrogen sensor,” US Patent. 6800499 B2 (2004).
    135.E.F. Kaelble, “Handbook of X-Rays,” New York: McGraw-Hill (1967).
    136.H. K. Henisch, “Rectifying semiconductor contact,” ch 4, Oxford: Clarendon Press (1957).
    137.A. G. Milnes and D. L. Feucht, “Heterojunctions and metal-semiconductor junctions,” ch 7, New York: Academic Press (1972).
    138.E. H. Rhoderick, “Metal-semiconductor contacts,” ch1, Oxford: Clarendon Press (1978).
    139.D. A. Neamen, “Semiconductor physics and devices—basic principles,” ch 8, 2nd edn., Boston: McGraw Hill (2003).
    140.B. L. Sharma, “Metal-semiconductor Schottky barrier junctions and their applications,” ch 2, New York: Plenum Press (1984).
    141.W. Schottky, R. Strömer, and F. Waibel, Hochfrequenztechnik, 37, pp. 162-165 (1931).
    142.W. Schottky, Naturwissenschaften, 26, pp. 843 (1938).
    143.W. Mönch, “Metal-semiconductor contacts: electronic properties,” Surf. Sci., 299-300, pp. 928-944, 1994.
    144.Y. Gurbuz, W. pp. Kang, J. L. Davidson, and D. V. Kerns, “Analyzing the mechanism of hydrogen adsorption effects on diamond based MIS hydrogen sensors,” Sens. Actuator B-Chem., 35(1-3), pp. 68-72, 1996.
    145.G. Eftekhari, “Variation in the effective Richardson constant of metal/GaAs and metal/InP contacts due to the effect of processing parameters,” Phys. Status Solidi, 140, pp. 194-198, 1993.
    146.S. M. Sze, “Semiconductor devices—physics and technology,” ch 5, 2nd edn., New York: John Wily & Sons (2002).
    147.A. M. Cowley and S. M. Sze, “Surface states and barrier height of metal-semiconductor systems,” J. Appl. Phys., 36, pp. 3212-3220, 1965.
    148.S. Hara, T. Teraji, H. Okushi, and K. Kajimura, “Control of Schottky and ohmic interfaces by unpinning Fermi level,” Appl. Surf. Sci., 117, pp. 394-399, 1997.
    149.S. Hara, “The Schottky limit and a charge neutrality level found on metal/6H-SiC interfaces,” Surf. Sci., 494(3), pp. L805-L810, 2001.
    150.T. Teraji and S. Hara, “Control of interface states at metal/6H-SiC(0001) interfaces,” Phys. Rev. B, 70(3), Art. No. 035312, 2004.
    151.K. Hayashi, N. Sawaki, and I. Akasaki, “Raman-scattering in ZnSxSe1-x alloys,” Jpn. J. Appl. Phys., Part 1, 30(3), pp. 501-505, 1991.
    152.K. K. Tiong, pp. M. Amirtharaj, F. H. Pollak, and D. E. Aspnes, “Effects of As+ ion-implanatation on the Raman-spectra of GaAs-spatial correlation interpretation,” Appl. Phys. Lett., 44(1), pp. 122-124, 1984.
    153.Z. Q. Shi and W. A. Anderson, “Nearly ideal Schottky contacts of n-InP,” in proceedings of the Third Int Conf Indium Phosphide Relat Mater, Cardiff, Wales, UK, pp. 535-538, 1991.
    154.Z. Q. Shi, R. L. Wallace and W. A. Anderson, “High-barrier height Schottky diodes on n-InP by deposition on cooled substrates,” Appl. Phys. Lett., 59(4), pp. 446-448, 1991.
    155.Y. I Chou, H. I. Chen, and C. M. Chen, “A new Pd/InP Schottky hydrogen sensor fabricated by electrophoretic deposition with Pd nanoparticles,” IEEE Electron Device Lett., 26(2), pp. 62-65, 2005.
    156.Z. Q. Shi and W. A. Anderson, “MIS diodes on n-InP having an improved interface,” Solid-State Electron., 34(3), pp. 285-289,1991.
    157.H. I. Chen, C. K. Hsiung, and Y. I Chou, “Characterization of Pd-GaAs Schottky diodes prepared by the electroless plating technique,” Semicond. Sci. Technol., 18, pp. 620-626, 2003.
    158.H. I. Chen, Y. I Chou, and C. K. Hsiung, “Novel high-performance Pd/GaAs Schottky diodes prepared via acidic electroless plating route,” Semicond. Sci. Technol., in written (2005).
    159.F. A. Lewis, “The palladium-hydrogen system,” New York: Academic Press (1967).
    160.I. Lundström, “Hydrogen sensitive MOS-structures part 1: principles and applications,” Sens. Actuators, 1, pp. 403-426, 1981.
    161.I. Lundström, “Hydrogen sensitive MOS-structures part 2: characterization,” Sens. Actuators, 2, pp. 105-138, 1981/82.
    162.I. Lundström and D. Soderberg, “Isothermal hydrogen desorption from palladium films,” Appl. Surf. Sci., 10 (4), pp. 506-522, 1982.
    163.L. G. Petersson, H. M. Dannetun, J. Fogelberg, and I. Lundström, “Hydrogen adsorption states at the external and internal palladium surfaces of a palladium-silicon dioxide-silicon structure,” J. Appl. Phys., 58(1), pp. 404-413, 1985.
    164.I. Lundström, M. Armgarth, and L. G. Petersson, “Physics with catalytic metal gate chemical sensors,” CRC Crit. Rev. Solid State Mater. Sci., 5(3), pp. 201-278, 1989.
    165.L. pp. Tongson, B. E. Knox, T. E. Sullivan, and S. J. Fonash, “Comparative study of chemical and polarization characteristics of Pd/Si and Pd/SiOx/Si Schottky-barrier-type devices,” J. Appl. Phys., 50(3), pp. 1535-1537, 1979.
    166.J. Fogelberg, M. Eriksson, H. Dannetun, and L. G. Petersson, “Kinetic modeling of hydrogen adsorption/absorption in thin films on hydrogen-sensitive field-effect devices: observation of large hydrogen-induced dipoles at Pd-SiO2 interface,” J. Appl. Phys., 78(2), pp. 988-996, 1995.
    167.H. I. Chen, Y. I Chou, and C. Y. Chu, “A novel high-sensitive Pd/InP hydrogen sensor fabricated by electroless plating,” Sens. Actuator B-Chem., 85(1-2), pp. 10-18, 2002.
    168.J. W. Simons, “Absorption isotherms of hydrogen in -phase of hydrogen-palladium system,” J. Phys. Chem., 69, pp.3773-3781, 1965.
    169.K. Nobuhara, H. Kasai, W. A. Dino, H. Nakanishi, and A. Okiji, “H/Pd (111) absorption and desorption dynamics-hydrogen-induced lattice relaxation effects,” Jpn. J. Appl. Phys.-Part 1, 42(7B), pp. 4630-4632, 2003.
    170.S. Banerjee and M. H. Lee, “A diffusion model for hydrogen-palladium system,” J. Appl. Phys., 50, pp. 1776-1778, 1979.
    171.H. Okuyama, W. Siga, N. Takagi, M. Nishijima, and T. Aruga, “Path and mechanism of hydrogen absorption at Pd (100),” Surf. Sci., 401(3), pp. 344-354, 1998.
    172.K. Ito and K. Kojima, “Hydrogen detection by Schottky diodes,” Int. J. Hydrog. Energy, 7(6), pp. 495-497, 1982.
    173.I. Lundström and L. G. Petersson, “Chemical sensors with catalytic metal gates,” J. Vac. Sci. Technol. A, 14(3), pp. 1539-1545, 1996.
    174.J. Fogelberg, ”Catalytic reactions studied with metal-oxide-semiconductor structures: experimental studies and kinetic modeling of hydrogen uptake in palladium during reaction conditions,” dissertation no. 346, Linköping Studies in Science and Techology, Linköping University, Sweden, 1994.
    175.L. G. Petersson, H. M. Dannetun, S. E. Karlsson and I. Lundström, “Surface reaction on Pd studied with a hydrogen sensitive MOS-structure and photoelectron spectroscopy,” Phys. Scr., 25, pp. 818-825, 1982.
    176.R. R. Rye and A. J. Ricco, “Ultrahigh vacuum studies of Pd metal/insulator/semiconductor diode H2 sensors,” J. Appl. Phys., 62(3), pp. 1084-1092, 1987.
    177.A. Spetz, M. Armgarth and I. Lundström, “Hydrogen and ammonia response of metal-silicon dioxide-silicon structures with thin platinum gates,” J. Appl. Phys., 64(3), pp. 1274-1283, 1988.
    178.L. G. Ekedahl, M. Eriksson and I. Lundström, “Hydrogen sensing mechanisms of metal-insulator interfaces,” Acc. Chem. Res., 31, pp. 249-256, 1998.
    179.A. E. Åbom, R. T. Haasch, N. Hellgren, N. Finnegan, L. Hultman, and M Eriksson, “Characterization of the metal–insulator interface of field-effect chemical sensors,” J. Appl. Phys., 93(12), pp. 9760-9768, 2003.
    180.G. A. Somorjai, “Principles of surface chemistry,” ch 5, New Jersey: Prentice-Hall (1972).
    181.J. M. Thomas and W. J. Thomas, “Introduction to the principles of heterogenerous catalysis,” London: Academic Press (1967).
    182.D. N. Jewett and A. C. Makrides, “Diffusion of hydrogen through palladium and palladium-silver alloy,” J. Chem. Soc. Faraday Trans., 61, pp. 932-939, 1965.
    183.D. Soderberg and I. Lundström, “Surface and interface dipoles on catalytic metal films,” Solid State Commun., 35(2), pp. 169-174, 1980.
    184.H. C. Card and E. H. Rhoderick, “Studies of tunnel MOS diodes I: interface excess in Silicon Schottky diodes,” J. Phys. D: Appl. Phys., 4, pp. 1586-1601, 1971.
    185.R. D. Harter, “Adsorption phenomenon,” ch 5, New York: Van Nostrand Reinhold Co. (1986).
    186.A. R. Miller, “The adsorption of gases on solids,” ch 4, New York: Combridge: University Press (1949).
    187.P. W. Atkins, “Physical Chemistry,” p. 992, New York: Oxford University Press (1998).
    188.J. Osick, “Adsorption,” ch 6, New York: Halsted Press (1982).
    189.M. Eriksson, I. Lundström and L. G. Ekedahl, “A model of the Temkin isotherm behavior for hydrogen adsorption at Pd-SiO2 interfaces,” J. Appl. Phys., 82(6), pp. 3143-3146, 1997.
    190.J. Fogelberg and L. G. Petersson, “Kinetic modeling of the H2-O2 reaction on Pd and of its influence on the hydrogen response of a hydrogen sensitive Pd metal-oxide-semiconductor device,” Surf. Sci., 350, pp. 91-102, 1996.
    191.M. Johansson, I. Lundström and L. G. Ekedahl, “Bridging the pressure gap for palladium metal-insulator-semiconductor hydrogen sensors in oxygen containing environments,” J. Appl. Phys., 84(1), pp. 44-51, 1998.
    192.Y. Morita, K. I. Nakamura and C. Kim, “Langmuir analysis on hydrogen gas response of palladium-gate FET,” Sens. Actuator B-Chem., 33(1-3), pp. 96-99, 1996.
    193.H. I. Chen, C. M. Chen and Y. I Chou, “An ultrahigh hydrogen-sensitive nano-Pd/InP Schottky diode fabricated by electrophoretic deposition,” Sens. Actuator B-Chem., in preparation.
    194.H. I. Chen and Y. I Chou, “A Comparative Study on Hydrogen Sensing Performances between Electroless Plated and Thermal Evaporated Pd/InP Schottky Diodes,” Semicond. Sci. Technol, 18, pp. 104-110, 2003.
    195.R. A. Alberty and R. J. Silbey, “Physical Chemistry,” p. 640, New York: John Wiley & Sons (1992).
    196.K. J. Laidler and J. H. Meiser, “Physical Chemistry,” p. 385, Boston: Houghton Mifflin (1995).
    197.H. I. Chen and Y. I. Chou, “Evaluation of the perfection of the Pd-InP Schottky interface from the energy viewpoint of hydrogen adsorbates,” Semicond. Sci. Technol, 19, pp. 39-44, 2004.
    198.Huey-Ing Chen, Yen-I Chou, and Chieh-Kang Hsiung, “Comprehensive study of adsorption kinetics for hydrogen sensing with an electroless-plated Pd/InP Schottky diode,” Sens. Actuators B, 92, pp. 6-16, 2003.
    199.L. M. Lechuga, A. Calle, D. Golmayo, and F. Briones, “The ammonia sensitivity of Pt/GaAs Schottky barrier diodes,” J. Appl. Phys., 70, pp. 3348-3354, 1991.
    200.A. L. Spetz, D. Scheißer, A. Baranazahi, B. Wälivaara, W. Göpel, and I. Lundström, “X-ray photoemission and Auger electron spectroscopy analysis of fast responding activated metal oxide silicon carbide gas sensors,” Thin Solid Films, 299, pp. 183-189, 1997.
    201.T. Eklöv, pp. Mårtensson, and I. Lundström, “Enhanced selectivity of MOSFET gas sensors by systematical analysis of transient parameters,” Anal. Chim. Acta, 353, pp. 291-300, 1997.
    202.D. Fillippini and I. Lundström, “Hydrogen detection on bare SiO2 between metal gates,” J. Appl. Phys., 91, pp. 3896-3903, 2002.
    203.A. E. Åbom, E. Comini, G. Sberveglier, N. Finnegan, I. Petrov, L. Hultman, and M. Eriksson, ”Experimental evidence for a dissociation mechanism in NH3 detection with MIS field-effect devices,” Sens. Actuators B, 89(1-2), pp. 1-8, 2003.
    204.S. Matsushima, Y. Teraoka, N. Miura and N. Yamazoe, “Electronic interaction between metal and metal additives and tin dioxide in tin dioxide-based gas sensors,” Jpn. J. Appl. Phys., 27(10), pp.1798-1802, 1988.
    205.W. S. Epling, G. B. Hoflund and D. M. Minahan, “Formation and detection of subsurface oxygen polycrystalline Pd surfaces,” Catal. Lett., 39(3-4), pp. 179, 1996.
    206.W. X Huang, R. S. Zhai and X. H. Bao, “Investigation of oxygen adsorption on Pd (100) with defects,” Appl. Surf. Sci., 158, pp. 287-291, 2000.
    207.H. Zhang, J. Gromek, W. G. Fernando, S. Boorse and H. Marcus, “Pd/O/Pd system equilibrium phase diagram under a gas mixture of oxygen and nitrogen,” J. Phase Equilib., 23(3), pp.246-248, 2002.
    208.M. K. Rose, A. Borg, J. C. Dunphy, T. Mitsui, D. F. Ogletree and M. Salmeron, “Chemisorption of atomic oxygen on Pd (111) studied by STM,” Surf. Sci., 561(1), pp. 69-78, 2004.
    209.G. A. Sergrant and A. F. F. Bartlett, “Poisoning of palladium catalyst for reaction between hydrogen and oxygen,” J. Appl. Chem., 5(5), pp. 208-212, 1955.
    210.D. Söderberg and I. Lundström, “Competition between hydrogen and oxygen dissociation on palladium surface at atmospheric pressures,” Solid State Commun., 45(5), pp. 431-434, 1983.
    211.T. Kobiela and R. Dus, “STM/AFM studies of the catalytic reaction of oxygen with hydrogen on the surface of thin palladium film,” Vacuum, 63(1-2), pp. 267-276, 2001.
    212.T. Mitsui, M. K. Rose, E. Fomin, D. F. Ogletree, and M. Salmeron, “A scanning tunneling microscopy study of the reaction between hydrogen and oxygen to form water on Pd (111),” J. Chem. Phys., 117(12), pp. 5855-5858, 2002.
    213.R. Nowakowski and R. Dus, “Atomic force microscopy studies of thin Pd film response to palladium hydride formation and its reaction to oxygen,” Langmuir, 19(17), pp. 6750-6758, 2003.
    214.H. M. Dannetun, D. Söderberg, I. Lundström and L. G. Petersson, “The H2-O2 reaction on palladium studied over a large pressure range: independence of the microscopic sticking coefficients on surface condition,” Surf. Sci., 152/153, pp. 559-268, 1985.
    215.L. G. Petersson, H. M. Dannetun and I. Lundström, “Water production on palladium in hydrogen-oxygen atmospheres,” Surf. Sci., 163, pp. 273-284, 1985.
    216.L. G. Petersson, H. M. Dannetun, J. Fogelberg and I. Lundström, “Oxygen as promoter or poison in the catalytic dissociation of H2, C2H4, C2H2, and NH3 on palladium,” Appl. Surf. Sci., 27, pp. 275-284, 1986.
    217.J. Fogelberg, I. Lundström and L. G. Petersson, “Ammonia dissociation on oxygen covered palladium studied with a hydrogen sensitive Pd-MOS device,” Phys. Scr., 35, pp. 702-705, 1987.
    218.R. Jansson, H. Arwin, M. Armgarth and I. Lundström, “Activation of hydrogen sensitive palladium-oxide-semiconductor structures studied with simultaneous ellipsometric and capacitance measurements,” Appl. Surf. Sci., 37, pp. 44-54, 1989.
    219.J. Fogelberg, H. M. Dannetun, I. Lundström and L. G. Petersson, “A hydrogen sensitive palladium metal-oxide-semiconductor device as sensor for dissociating NO in H2-atmospheres,” Vacuum, 41(1-3), pp. 705-708, 1990.
    220.J. W. Medlin, A. E. Lutz, R. Bastasz and A. H. McDaniel, “The response of palladium metal-insulator-semiconductor devices to hydrogen-oxygen mixtures: comparisons between kinetic models and experiment,” Sens. Actuators B, 96(1-2), pp. 290-297, 2003.
    221.H. Conrad, G. Ertl, J. Küppers and E. E. Latta, Surf. Sci., 65, pp.235, 1977.
    222.L. G. Petersson, H. M. Dannetun and I. Lundström, “The water-forming reaction on palladium,” Surf. Sci., 161, pp. 77-100, 1985.
    223.L. G. Petersson, H. M. Dannetun and I. Lundström,” Hydrogen detection during catalytic surface reactions: evidence for activated lateral hydrogen mobility in the water-forming reaction on Pd,” Phys. Rev. Letters, 52, pp.1806-1809, 1984.

    下載圖示 校內:2006-05-03公開
    校外:2007-05-03公開
    QR CODE