簡易檢索 / 詳目顯示

研究生: 楊俊傑
Yang, Juin-Jie
論文名稱: 以第一原理計算探討鈦酸鉛鐵電材料摻雜鑭的缺陷形成機制
The study of defect formation energy and mechanisms in lanthanum doped Lead titanate by first-principles calculation
指導教授: 許文東
Hsu, Wen-Dung
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 75
中文關鍵詞: 鐵電材料鈦酸鉛第一原理鑭摻雜
外文關鍵詞: Ferroelectrics, Lead titanate, First-principles, Lanthanum doped
相關次數: 點閱:141下載:9
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 鐵電材料的命名來自於其具有自發極化(spontaneous polarization)的性質,其中鈦酸鉛系列材料是具有很高的自發極化以及壓電響應能力的鐵電體材料,常被應用在隨機記憶體、傳感器以及機電轉換設備。近年來,電子元件的尺寸日益縮小,然而性能的要求卻與日俱增,因此為了使鐵電材料的性質最佳化,開發具有高電容量以及低矯頑電場(coercive field)的材料成為關鍵議題。摻雜各種元素進入鈦酸鉛系列材料是一種常用的方法改變材料的電性,而鑭的摻雜可以很容易的調整鈦酸鉛材料的極化量、介電常數、矯頑電場和電阻率等性質,因此摻雜鑭是目前常見用於改變鈦酸鉛材料電性的方法。人們過去的研究著重於對鐵電材料的電域壁研究,然而鐵電材料在合成時會有許多種缺陷被引入,這些缺陷會影響材料的電性表現,因此這樣的缺陷形成機制是不可忽略的,然而在實驗中要準確量測缺陷的形成是很困難並具有挑戰性的,但我們的結果能以第一原理計算的方式模擬鈦酸鉛材料在摻雜鑭的情況下容易形成的缺陷。

    The purpose of this paper is to study the defect formation of lanthanum doped lead titanate by First-principles calculation. Due to the ionic radius, lanthanum ions tend to replace lead ions site. Under the premise of neutral electricity of the system, eight different charge compensation mechanisms are assumed. Based on these assumptions, the model with defects is constructed. The total energy of these model are calculated by VASP and valid chemical potentials that are constrained according to thermodynamic laws are used to calculate the defect formation energy. By comparison of defect formation energy, lead vacancy and titanium vacancy are more likely to form.

    摘要 I Abstract II 誌謝 XI 第一章 緒論 1 第二章 理論基礎及文獻回顧 4 2.1 鐵電材料 4 2.2 鈣鈦礦結構及其特性 6 2.3 鈦酸鉛材料特性 6 第三章 模擬基礎理論 8 3.1 第一原理計算(First principles calculation) 8 3.2 密度泛函理論方法 9 3.2.1 Hohenberg-Kohn定理 10 3.2.2 Kohn-Sham 方程式 11 3.2.3局部密度近似法與廣義梯度近似 11 3.2.4鬆弛以及自洽計算 13 第四章 實驗設計與模擬方法 15 4.1 摻雜鑭導致的缺陷形成與電荷補償機制 15 4.2 缺陷形成能的計算 18 4.3 計算模型的建置 18 4.3.1 週期性邊界 20 4.3.2 逕向分布函數 22 4.3.3 各缺陷機制下的穩定基態結構 22 4.4 化學勢能擬合 48 4.4.1 主相與競爭相生成焓計算 49 4.4.2擬合化學勢能範圍 52 4.5 氧分壓與溫度 58 第五章 結果與討論 60 5.1 缺陷形成能分析 60 5.1.1 缺陷形成能與化學勢能 60 5.1.2 缺陷形成與氧分壓以及溫度 64 5.2 能態密度分佈分析 65 5.3 電荷分析(Bader charge analysis) 69 5.4 極化量分析 72 第六章 結論 73 參考文獻 74

    1. F. Jona, G.S.D., New York ), Ferroelectric Crystals. 1993.
    2. Wu, Z., R. Cohen, and D. Singh, Comparing the weighted density approximation with the LDA and GGA for ground-state properties of ferroelectric perovskites. Physical Review B, 2004. 70(10): p. 104112.
    3. Wu, Z. and R.E. Cohen, More accurate generalized gradient approximation for solids. Physical Review B, 2006. 73(23): p. 235116.
    4. Kang, S.J., D.H. Chang, and Y.S. Yoon, Fatigue and dielectric properties of the (Pb, La) TiO 3 thin films with various La concentrations. Thin Solid Films, 2000. 373(1): p. 53-59.
    5. Freeman, C.L., et al., Energetics of Donor‐Doping, Metal Vacancies, and Oxygen‐Loss in A‐Site Rare‐Earth‐Doped BaTiO3. Advanced Functional Materials, 2013. 23(31): p. 3925-3928.
    6. Hennings, D. and G. Rosenstein, X-ray structure investigation of lanthanum modified lead titanate with A-site and B-site vacancies. Materials Research Bulletin, 1972. 7(12): p. 1505-1513.
    7. N.G. Eror, D.M.S., The chemistry of extended defects in non-metallic solids. 1970: p. 62.
    8. Bhaskar, S., et al., Studies on the structural, microstructural and optical properties of sol–gel derived lead lanthanum titanate thin films. Materials Science and Engineering: B, 2001. 87(2): p. 178-190.
    9. Meyer, B. and D. Vanderbilt, Ab initio study of ferroelectric domain walls in PbTiO 3. Physical Review B, 2002. 65(10): p. 104111.
    10. Damjanovic, D., Ferroelectric, dielectric and piezoelectric properties of ferroelectric thin films and ceramics. Reports on Progress in Physics, 1998. 61(9): p. 1267.
    11. ZHAN Bin, L.J.-L., LIU Yao-Chun, DING Jing-Xuan, LIN Yuan-Hua, NAN Ce-Wen, Research Progress of Oxides Thermoelectric Materials. Journal of Inorganic Materials, 2014: p. 237-244.
    12. Javier Junquera, D.d.C.d.l.T.y.F.d.l.M.C., Universidad and d. Cantabria, First-Principles Simulations on PbTiO3/SrTiO3 Superlattices. 2012.
    13. Sholl, D. and J.A. Steckel, Density functional theory: a practical introduction. 2011: John Wiley & Sons.
    14. Parr, R.G., Density functional theory, in Electron Distributions and the Chemical Bond. 1982: p. p. 95-100.
    15. W. Myers, a.W.S., Nuclear properties according to the Thomas-Fermi model. Nuclear Physics A, 1996: p. 601(2): p. 141-167.
    16. Kryachko, E.S., Hohenberg‐Kohn theorem. International Journal of Quantum Chemistry, 1980: p. 18(4): p. 1029-1035.
    17. Blöchl, P.E., Projector augmented-wave method. Physical review B, 1994. 50(24): p. 17953.
    18. Alahmed, Z. and H. Fu, First-principles determination of chemical potentials and vacancy formation energies in Pb Ti O 3 and Ba Ti O 3. Physical Review B, 2007. 76(22): p. 224101.
    19. Johnston, K., et al., Sr Ti O 3 (001)(2× 1) reconstructions: First-principles calculations of surface energy and atomic structure compared with scanning tunneling microscopy images. Physical Review B, 2004. 70(8): p. 085415.
    20. Fechner, M., S. Ostanin, and I. Mertig, Effect of the surface polarization in polar perovskites studied from first principles. Physical Review B, 2008. 77(9): p. 094112.

    下載圖示 校內:2019-08-30公開
    校外:2019-08-30公開
    QR CODE