| 研究生: |
潘瑋 Pan, Wei |
|---|---|
| 論文名稱: |
銪離子於摻雜 (Mg、Ca、Sr)離子之鋁矽玻璃基質中的自發還原行為探討 Spontaneous reduction of Eu3+ in (Mg、Ca、Sr) doped aluminosilicate glasses |
| 指導教授: |
吳毓純
Wu, Yu-Chun |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 資源工程學系 Department of Resources Engineering |
| 論文出版年: | 2012 |
| 畢業學年度: | 100 |
| 語文別: | 中文 |
| 論文頁數: | 83 |
| 中文關鍵詞: | Eu3+ 、Eu2+ 、自發還原 、螢光 、27Al NMR 、鋁矽酸玻璃 |
| 外文關鍵詞: | Eu3+, Eu2+, Reduction, Photoluminescence, 27Al NMR, aluminosilicate glasses |
| 相關次數: | 點閱:74 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究第一部分重點在觀察非晶質的SiO2中,Al離子添加濃度及Al的配位數改變情形,對於Eu3+在非還原氣氛中還原成Eu2+的影響。實驗中發現,當熱處理溫度為1000 °C時,Al離子的添加能使Eu3+離子在非還原氣氛下部份還原成具有藍光發光特性的Eu2+,此作用在Al離子濃度為10 mol %時表現最為明顯。從27Al NMR分析中發現,以AlO6結構形式鍵結的Al離子,是影響Eu3+→ Eu2+自發還原最重要的關鍵因素,當以此結構形式鍵結的Al離子比例增加時,對於Eu3+離子的還原有正面的影響。在本研究的第二部份,我們添加了鹼土族離子(Mg, Ca, Sr)於前述的鋁矽玻璃基質中,以探討鹼土族離子的添加對於Al離子配位狀態的影響。結果發現鹼土族離子以網路修飾劑的角色使網路結構達成價數平衡,因此有利於 Al離子以網路成形劑,也就是AlO4結構的形式呈現,降低Eu3+的還原作用發生。
此外,在本研究系列成份中,將熱處理溫度提高至1200 °C,部分添加鹼土族離子的樣品會有二次結晶相Quartz與Cristobalite的析出,以及其它包含鹼土族離子在內的複雜結晶相出現,在此情況下Eu2+因受到電子雲膨脹效應以及晶場效應的影響,與單純添加Al離子的樣品相較,發射光譜會有紅移的現象。最後比較Eu3+在空氣中自發還原與還原氣氛還原的結果發現,以還原氣氛處理的樣品會在短時間內大量生成Eu2+,而以結構引發的自發還原結果可適當生成部分的Eu2+,形成Eu3+與Eu2+共存的狀況,為合成同時具有紅、藍螢光特性的新式螢光材料的潛力途徑。
The first part of this work investigated the effect of Al on the spontaneous reduction behavior of Eu3+ to Eu2+ in non-reducing atmosphere according to their photoluminescent properties. It was found that the Al allowed to induce a partial reduction of Eu3+ to Eu2+ in silica glass and the amount of Eu2+ attained to maximum at a Al concentration of 10 mol % Al. 27Al NMR analyses indicated that coordination environment of Al varied with Al concentrations. The coordination states of Al ions were the key factor controlling the reduction of Eu3+ where the intensity of blue emission was generally proportional to the amount of Al in 6-fold coordination. In the second part, alkaline earth metal ions (Mg, Ca, Sr) were additionally codoped into aluminosilicate glasses prepared in the first part of work. The incorporation of alkaline earth metal ions can serve as modifier cations in the glass network and were favorable for the formation of AlO4. Accordingly, the reduction process of Eu3+ was restrained when the alkaline earth ions were coexisted in the glasses structure. Nevertheless, the blue emission was enhanced again and showed an obvious red shift when these samples were heat-treated at 1200 °C where a crystallization of a second phase was occurred. The red shift of the blue emission indicated a variation of nephelauxetic effect and crystal field effect around Eu2+ due to the partial crystallization. The experimental results confirmed a strong correlation between the spontaneous reduction of Eu3+ and the structural properties of the glasses compositions. The reduction mechanism of Eu3+ in aluminosilicate glasses system, particularly the role of Al ions, was described in the current work. In comparison with the of reduction of Eu3+ under a reducing atmosphere and in air, great amount of Eu2+ were induced for the former treatment that generated a strong blue emission of Eu2+ whereas the red emission was abruptly decreased simultaneously. As a consequence, the spontaneous reduction occurred in air via the composition modification is considered a promising method to obtain the bichromatic (blue/red) luminescent materials for the future optical applications.
1. S. Ye, F. Xiao, Y.X. Pan, Y. Y. Ma, Q. Y. Zhang , Mater. Sci. Eng. R., 71(2010) 1.
2. U. Rambabu, N. R. Munirathnam, T. L. Prakash, S. Buddhudu, Mater. Chem. Phys., 78 (2002) 160.
3. C. Zhu, X. Liang, Y. Yang, G. Chen, J. Lumine., 130 (2010) 74.
4. W. Xu, C. Jiang, J. Display Tech., 6 (2010) 298.
5. D. M. Roy and R. Roy, Am. Mineralogist., 40 (1955) 147.
6. H. Dislich, Angew Chem. Int. Ed. Engl., 10 (1971) 363.
7. C. J. Brinker, G. W. Scherer, “Sol-Gel Science :/ the Physics and chemistry of sol-gel processing”, (1990) P102.
8. J. T. Kohli, R. A. Condrate, J. E. Shelby, Phys. Chem. Glasses., 34 (1993) 81.
9. N. J. Clayden, S. Esposito, A. Aronne, P. J. Pernice, Non-Cryst. Solids., 11 (1999) 258.
10. J. E. Shelby, J. T. Kohli, J. Am. Ceram. Soc., 73 (1990) 39.
11. T. Schaller, J. F. Stebbins, M. C. Wilding, J. Non-Cryst. Solids., 243 (1999) 146.
12. H.Aguiar, J. Serra, P. Gronzalez, B. Leon, J. Non-Cryst. Solids., 355(2009 ) 475.
13. D. R. Neuville, L. Cormier, D. Massiot, Chem. Geol., 229 (2006) 173.
14. S. Sen, R. E. Youngman, J. Phys. Chem. B., 108 (2004) 7557.
15. J. Jin, S. Sakida, T. Yoko, M. Nogami, J. Non-Cryst. Solids., 262 (2000) 183.
16. T. Fugiyama, T. Yokoyama, M. Hori, M. Sasaki, Non-Cryst. Solids., 135 (1991) 198.
17. S. L. Lin, C. S. Hwang, Non-Cryst. Solids., 202 (1996) 61.
18. B.O. Mysen, P. Richet, “Silicate glasses and melts: Properties and structure” (2005) P102.
19. J. F. Stebbins, S. Kroeker, S. K. Lee, T. J. Kiczenski, Non-Cryst. Solids., 275 (2000) 1.
20. P. R. Bodart, J. Parmentier, R. K. Harris, D. P. Thompson, Phys. Chem. Solids., 60 (1999) 223.
21. M. Schmucker, K. J. D. MacKenzie, H. Schneider, R. Meinhold, Non-Cryst. Solids., 217 (1997) 99.
22. S. H. Risbud, R. J. Kirkpatrick, A. P. Montez, J. Am. Ceram. Soc., 70 (1987) C10.
23. Z. N. Utegulov, M. A. Eastman, S. Prabaker, K.T. Mueller, A. Y. Hamad, J.P. Wicksted, G. S. Dixson, Non-Cryst. Solids., 315 (2003) 43.
24. N. J. Clayden, S. Esposito, A. Aronne, P. Pernice, Non-Cryst. Solids., 258 (1999) 11.
25. D. Llères, S. Swift, A. I. Lamond, Curr. Proto. Cyto., 12 (2007) 10.
26. J. A. DeLuca, J. Chem. Educ., 57 (1980) 8.
27. 張永政,“矽酸鹽Na3YSi2O7系螢光粉之製備與光致發光特性研究”,國立成功大學材料科學及工程學系碩士論文 ,2010.
28. 蘇鏘 ,“稀土元素”,北京 ,清華大學出版社 ,2000.
29. R. C. Ropp, “Luminescence and the Solid State-2nd ed“, Amsterdam, 2004.
30. C. H. Park, T. H. Kim, Y. Yonesaki, N. Kumada, J. Solid State Chem., 184 (2011) 1566.
31. F. Clabau, A. Garcia, P. Bonville, D. Gonbeau, T. L. Mercier, P. Deniard, S. Jobic, J. Solid State Chem., 181 (2008) 1456.
32. J. S. Kim, Y. H. Park, S. M. Kim, J. C. Choi, H. L. Park, Solid State Commun., 133 (2005) 445.
33. M. Nogami, K. Watanabe, Y. Ito, H. Ito, J. Am. Ceram. Soc., 93 (2010) 1663.
34. N. Yamashita, J. Electrochem. Soc., 140 (1993) 840.
35. W.Chen, R. Sammynaiken, and Y. Huang, J. Appl. Phys., 88 ( 2000) 1424.
36. Y. Gao, C. S. Shi, Y. Wu, Mater. Res. Bull., 31 (1996) 439.
37. M. Nogami, Y. Abe, J. Non-Cryst. Solid., 197 (1996) 73.
38. N. Kamata,
C. Satoh, K. Tosaka and K. Yamada, J. Non-Cryst. Solids, 293 (2001) 595.
39. N. Kamata, K. Tosaka, Z. Honda and K. Yamada, Jpn. J. Appl. Phys., 43 (2004) 372.
40. A. Biswas, C. S. Friend, G. S. Maciel, P. N. Prasad, J. Non-Cryst. Solids, 261 (2000) 9.
41. X. Hu, J. Fan, T. Li, D. Zhang, W. Chen, J. Bai and X. Hou, Opt. Mater., 29 (2007) 1327.
42. Z. H. Lian, J. Wang, Y. Lv, S Wang, Q. Su, J. Alloy. Compound., 430 (2007) 257.
43. H. You, M. Nogami, J. Phys. Chem. B., 109 (2005) 13980-13984.
44. M. Y. Peng, Z. W. Pei, G. Y. Hong, Q. Su, Chem. Phys. Lett., 371 (2003) 1
45. J. H. Hao, J. Gao, Appl. Phys. Let., 85 (2004) 3720.
46. S. X. Lian, P. T. Shi, C. Z. Li, A. L. Zhu, X. G. Mao, J. Rare Earth, 21 (2003) 68.
47. C. Wang, M. Y. Peng, N. Jiang, Z. W. Jiang, C. J. Zhao, J. R. Qiu, Mater. Lett., 61 (2007) 3608.
48. H. Niida, M. Takahashi, T. Uchino, T. Yoko, J. Meter. Res., 18 (2003) 1.
49. J. A. Duffy, J. Non-Cryst. Solid., 196 (1996) 45.
50. E. Douglas, D. H. McDaniel and J. J. Alexander, “Concepts and models of Inorganic Chemistry-3rd”, John Wiley % Sons Inc., New York (1994).
51. S. Liu, G. Zhao, Z. Yao, T. Xie, J. Jin, H. Ying, J. Wang, G. Han, J. Am. Ceram. Soc., 91 (2008) 2740.
52. A. Herrmann, S. Fibikar, D. Ehrt, J. Non-Cryst. Solid., 355 (2009) 2093.
53. C. Wang, M. Peng, N. Jiang, X. Jiang, C. Zhao, J. Qiu, Mater. Lett., 61 (2007) 3608.
54. C. Zhang, Jun Yang, C. Lin, C. Li, J. Lin, J. Solid State Chem., 182 (2009) 1566.
55. Y. Q. Li, J. E. J. van Steen, J. W. H. van Krevel, G. Botty, A. C. A. Delsing, F. J. DiSalvo, D. De With , H. T. Hintzen , J. Alloys Compd.,417 (2006) 273.
56. X. Lou, W. Cao, F. Sun, Chin. Sci. Bull., 53 (2008) 2923.
57. 劉如熹、王健源“白光發光二極體製作技術”,台灣台北 ,全華圖書,2001.
58. 國家同步輻射中心, http://www.srrc.gov.tw/chi/about/index.html.
59. D. Hreniak, M. Jasiorski, K. Maruszewski, L. Kepinski, L. Krajczyk, J. Misiewicz, W. Sterk, J. Non-Cryst. Solids, 298 (2002) 146.
60. J. H. Lee, Y. J. Kim, Mater. Sci. Eng.,146, (2008) 99–102.
61. J. Jin, S. Sakida, T. Yoko, M. Nogami, J. Non-Cryst. Solids, 262 (2000) 183.
62. F. Wang, A. Stamboulis, D. Holland, S. Matsuya, A. Takeuchi, Key Eng. Mater.,361 (2008) 825.
63. T. Scaller, J. F. Stebbins, J. Phys. Chem. B., 102 (19988) 10690.
64. J. Qiu, K. Miura, N.Sugimoto, K.Hirao, Non-Cryst. Solids., 213 (1997) 266.
65. S. Freed , Rev. Mod. Phys., 14 (1942) 105.
66. B. R. Judd , J. Chem. Phys., 44 (1966) 839.
67. G. S. Ofelt , J. Chem. Phys., 37 ( 1962) 511.
68. R. Vercaemst, D.Poelman, L. Fiermans, R.L. Van Meirhaeghe, W. H. Laflere, F. Cardo, J. Electron. Spectrosc. Relat. Phenom., 105 (2006) 21.
69. J. Liao, Y. Wei, B. Qiu, Y. Li, L. Liu, Q. Wu, Physica B., 405 (2010)3507.
70. W. J. L. Oomen, A. M. A. van Dongen, J. Non-Cryst. Solids ,111 (1989) 205.
71. G. Pacchioni, F. Illas, Chem. Phys. 199 (1995) 155.