| 研究生: |
杜博文 Du, Bo-Wen |
|---|---|
| 論文名稱: |
循環式防火爐流場之數值模擬 Numerical Simulations of Flow Field in Closed-Type Fire Safety Furnace |
| 指導教授: |
林三益
Lin, S. Y. |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2009 |
| 畢業學年度: | 97 |
| 語文別: | 中文 |
| 論文頁數: | 85 |
| 中文關鍵詞: | 三維自然防火爐 、三維空穴流場 、三維T型管流場 |
| 外文關鍵詞: | T-junctions, Cavity flow, Natural convection flow |
| 相關次數: | 點閱:80 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文使用計算軟體,進行防火安全用防火爐流場之分析。其目的在探討縮小比例的防火爐,在高溫氣體流入後,防火爐和循環管路流場分析。且討論循環管路對於防火爐流場之影響和縮小防火爐比例下,爐內升溫曲線是否能在較低的速度之下符合國際規範的溫度曲線。本研究採用計算軟體Fluent之PISO數值方法進行模擬計算。
在程式驗證,在循環式防火爐架構下,主要進行三維T型管流場驗證、三維空穴流場和三維自然對流流場驗證,以確保其準確性。
實際物理模型長寬高尺寸為2m*2m*2m,並外接直徑為0.2m的圓管來模擬循環管路,並在管路入口流入逐漸增溫的高溫氣體,觀察其內部溫度流場是否有良好的升溫現象,且是否符合國際標準規範的CNS昇溫曲線。並在管路出入口計算出運轉此循環式防火爐,需要多少的能量驅動。計算結果顯示,本研究所設計之循環式防火安全用防火爐,可以達到CNS昇溫標準,且藉由壓力變化,所需要做功隨時間增加而逐漸減少,在模擬時間為30分鐘後,所需要能量約為853J。
In this paper, the flow fields in a fire safety furnace have analyzed by a numerical software. The purpose of this research is to analyze the flow structures and temperature distribution when the high temperature gas go through close-type fire safety furnace. The numerical simulations of flow field in the closed-type fire safety furnace is made by commercial program Fluent.The PISO method is chosen in this program.
Three test cases,three-dimensional t-junctions, three-dimensional cavity flow and three-dimensional natural convection problem, are simulated to see the accuracy of the numerical method.
The physical model of the closed-type fire safety furnace has the size of 2m*2m*2m , and a circular pipe with diameter 0.2m of added. By injecting the elevated temperature gas from the inlet, the temperature distribution in the furnace is observed and is designed to conform the CNS elevated temperature standard. According to the computed data at the inlet, the work consumption in the Closed-Type Fire Safety Furnace is calculated. Our simulation results show, the proposed Closed-Type Fire Safety Furnace achieves the CNS elevated temperature standard and by The work consumption is reduced by time. After 30 minutes of simulation, the work consumption needed is 853J.
【1】 陳彥章,”防火安全用防火爐流場之數值模擬”成功大學航空太空研究所碩士論文,2008年6月
【2】 FLUENT User’s Guide Ver.6.3.16, FLUENT Inc
【3】 S.V.Patanker and D.B.Spalding,“A calculation procedure for heat,mass and momentum transfer in three-dimensional parabolic flows,”Int.J.Heat Mass Transfer Vol 15,pp1787-1806,1972
【4】 J.P.Van Doormaal and G.D.Raithby,“Enhancements of the SIMPLE methods for predicting incompressible fluid flows,”Num.Heat Mass Transfer Vol 7,pp147-63,1984.
【5】 R.I.ISSA, “Solution of The Implicitli Discretised Fluid Flow Equations By Operator-Splitting ,”Journal of Computational Physics Vol.62,pp40-65,1985.
【6】 R.I.ISSA, “The Computation of Compressible and Incompressible Recirculating Flows By A Non-Iterative Implicit Scheme ,”Journal of Computational Physics Vol.62,pp66-82,1986.
【7】 B.E Launder, D.B.Spalding, and Lectures in Mathematical Models of Turbulence. Academic Press,London,1972
【8】 T.Karino, H. M. Kwong and H. L. Goldsmith, “Particle Flow Behaviour In Models of Branching Vessels:I. Vortices In 90 T-Junctions,”Biorheology Vol.16,pp231-248,1979.
【9】 T.Karino, and H. L. Goldsmith, “Particle Flow Behaviour In Models of Branching Vessels:II.Effects of Branching Angle and Diameter Ratio On Flow Patterns Vol.22, pp87-104,1985.
【10】 C.Shu, L.Wang, and Y.T.Chew, “Numerical Computation of Three-Dimensional Incompressible Navier-Stokes Equations In Primitive Variable Form By DQ Method,” Int. J. Numer. Meth. Fluids, Vol. 43, pp345-368, 2003
【11】 T. Fusegi, J.M. Hyun, K. Kuwahara, and B. Farouk, “A Numerical Study of Three-Dimensional Natural Convection in a Differentially Heated Cubical Enclosure,” Int. Journal. Heat and Mass Transfer, Vol.34, No.76, pp.1543-1557, 1990.
【12】 盧天民, “三微電子系統熱傳分析”成功大學航空太空研究所碩士論文, 2001年6月
【13】 吳村木,“以有限體積法探討流經圓柱渦漩曳放的壓抑現象”成功大學航空太空研究所博士論文, 1993年6月
【14】 詹惟淳,”密閉矩形試流場及熱傳數值模擬分析”成功大學航空太空研究所碩士論文,2007年7月
【15】 戴嘉慧,”分歧管流之數值模擬”成功大學航空太空研究所碩士論文,2001年6月
【16】 S.Mittal, “Computation of three-dimensional flows past circular cylinder of low aspect ratio” PHYSICS OF FLUIDS, Vol.13 No.1,pp171-191.
【17】 W. Qu and I. Mudawar, “Analysis of Three-Dimensional Heat Transfer In Micro-Channel Heat Sinks,” Int. Journal. Heat and Mass Transfer, Vol.45, no. 19, pp. 3973-3985.
【18】 R.Clarke and D.P.Finn, “The Influence of Secondary Refrigerant Air Chiller U-Bends On Fluid Temperature Profile and Downstream Heat Transfer For Laminar Flow Conditions,” Int. Journal. Heat and Mass Transfer, Vol.51,pp724-735.
【19】 GAMBIT Command Reference Guide Ver.2.3, FLUENT Inc