| 研究生: |
謝秀峰 Hsieh, Hsiu-Feng |
|---|---|
| 論文名稱: |
二氧化碳在純氧條件下對於微管道的觸媒效應之影響 The Effect of Carbon Dioxide in Oxy-fuel Atmosphere on Catalyst Reaction in a Small-Scale Channel |
| 指導教授: |
趙怡欽
Chao, Yei-Chin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 58 |
| 中文關鍵詞: | 純氧燃燒 、觸媒燃燒 、數值模擬 、分段式觸媒 |
| 外文關鍵詞: | Oxy-fuel, Catalytic combustion, Catalyst segmentation, Simulation |
| 相關次數: | 點閱:134 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究主要是利用實驗搭配模擬當二氧化碳在純氧條件下對於微管道的觸媒效應之影響。由於純氧燃燒當二氧化碳取代氮氣會因為二氧化碳比熱為氮氣1.66倍,此外從化學角度去觀看反應式CO2+H ->CO+OH,之反應為大量吸熱反應,導致火焰的不穩定性,以及純氧燃燒的氧氣來源需要另外耗能提供,而且微小化過程所造成面體比(surface-to-volume ratio)增加與混合停滯時間減少的問題,進而導致火焰冷熄現象的發生,主要包括熱能冷熄(thermal quenching)與自由基冷熄(radical quenching)。目前純氧燃燒的結果都顯示,在CO2迴流環境下氧氣比例通常需要提高到約30%才能穩定穩駐火焰,對於純氧燃燒的推動相當不利。
因此吾人採用微管道中披覆觸媒並搭配不同觸媒配置與空腔設計進而誘發氣相化學反應與壁面化學反應,得以增加燃料轉化率。實驗結果顯示,燃料為氫氣、當量比0.6且流體速度為10m/s時,分段式觸媒搭配空腔可以維持氣相反應於氧氣濃度為23%的純氧條件,因此觸媒與空腔及其搭配確實可以有效降低所需的穩駐火焰的氧氣比例。另外從模擬可看出CO的來源大都來自於氣相反應,而當CO接近觸媒壁面時很容易被觸媒吸附並反應成CO2增加熱釋率,因此觸媒有助於較低的氧氣比例下去穩駐火焰,而且尾氣CO2濃度的提升,也有助於CO2捕捉。
In this study, the effect of carbon dioxide on catalyst reaction in a small-scale channel in oxy-fuel atmosphere is investigated through experiments and numerical simulation. In the oxy-combustion, carbon dioxide in the flue gas is usually recirculated to dilute the oxidizer stream to reduce the flame temperature. However, the specific heat of carbon dioxide is relatively higher than that of nitrogen, and it causes significant reduction of flame temperature and combustion stability margin. Furthermore, carbon dioxide in the flame does not only act as an inert diluent, but also involve in flame reactions and modifies flame behavior and combustion characteristics. The chemical reaction CO2+H -> CO+OH usually found in the flame is a large endothermic reaction step and may cause combustion instability if its reaction rate is altered by CO2 addition. During the miniaturization, the surface-to-volume ratio of the combustion chamber will be increased and the mixing and reaction residence time will be decreased. It causes flame quenching, such as thermal quenching and radical quenching.
Consequently, various flame enhancing and flame stabilization techniques for micro-scale combustors have been proposed, among these techniques the catalyst bed configuration of segmented catalyst with cavity in a micro-channel is expected to induce gas reaction and surface reaction simultaneously, and enhance fuel conversion. The experimental results of the segmented catalyst with cavities show the improvement of oxy-combustion behaviors in a micro-channel by reducing the requirement of excessive oxygen concentration in the oxidizer stream for flame stability. When the flow rate is 10 m/sec and corresponding equivalence ratio of 0.6, oxy-hydrogen combustion in a micro-channel can be stabilized in a condition of 23% oxygen concentration in the oxidizer stream. The simulation results also show that the carbon monoxide generated in gas reaction can be oxidize to carbon dioxide by surface reaction and release heat. Using catalyst, the oxy-combustion can be stabilized in a condition of lower oxygen concentration.
1. Fernandez-Pello, A.C., “Micropower generation using combustion : issues and approaches”, Proceedings of the Combustion Institute, Vol. 29, pp. 883-889, 2003.
2. Miesse, C.M., Masel, R.I., Jensen, C.D., and Shannon, M.A., “Submillimeter-scale combustion”, AIChE Journal, Vol. 10, No. 12, pp. 3206-3214, 2004.
3. Cho, I.H., Park, S.B., Cho, S.J., and Ryoo, R., ”Investigation of Pt/Al2O3 catalysts prepared by sol-gel method:XAFS and Ethane Hydrogenolysis” ,Journal of Catalysis, Vol. 173, pp. 295-303, 1998.
4. Bijjula, K., and Vlachos, D.G., “Catalytic ignition and autothermal combustion of JP-8 and its surrogates over a Pt/γ-Al2O3 catalyst”, Proceedings of the Combustion Institute, Vol. 33, pp. 1801-1807, 2011.
5. 吳榮宗,”工業觸媒概論”國興出版社,1989
6. Zhang, R., and Schwarz, T.A., “Design of Inhomogeneous Metal Distribution Within Catalyst Particles”, Applied Catalysis A: General, Vol.91, pp.57, 1992.
7. Jirgensons, B., and Stranmains, M.E., “Colloid Chemistry”, McMillan, New York. 1962.
8. 陳慧英,黃定加,朱秦億,”溶膠凝膠法在薄膜製備上之應用”,化工技術,第七卷,第十一期,152-167,1999
9. 陳冠豪,”以溶膠凝膠法製備MnOx/Al2O3觸媒焚化處理三氯乙烯之研究”國立成功大學環境工程系碩士論文,2003
10. Arai, H., Yamada, T., Eguchi, K., Seiyama, T., “Catalytic combustion of methane over various perocskite-type oxide”, Applied Catalysis B: Environment, Vol. 3, pp. 275-282, 1994.
11. 王建評,”一氧化碳毒化對質子交換膜燃料電池性能影響之分析”,國立交通大學機械工程系博士論文,2007。
12. 王清輝,”銅-鉬氧化物擔體觸媒應用於氧化分解二硫化二甲基之研究”,國立成功大學化工學系碩士論文,六月,1998。
13. Pfefferle, W.C., Pfefferle, L.D., “Catalytically stabilized combustion”, Pro. Eng. Combust. Sci., Vol. 12, pp. 25-41, 1986.
14. Masao, T., Junjo, K., ”Experimental analysis of C3H8 catalyst combustion in a honeycomb monolith Pt catalyst”, The First Asia-Pacific Conference on combustion, pp. 555-558, 1997.
15. Ma, Y., Ricciuti, C., Miller, T., Kadlowec, J., and Pearlman, H., ”Enhanced Catalytic Combustion Using Sub-micrometer and Nano-size Platinum Particles”, Energy and Fuel, Vol, 22, pp. 3695-3700, 2008.
16. Federici, J.A., Vlachos, D.G., “Experimental studies on syngas catalytic combustion on Pt/Al2O3in a microreactor”, Combustion and Flame, Vol. 158, pp. 2540–2543, 2011.
17. Deutschmann, O., Behrendt, F., “Modelling and simulation of heterogeneous oxidation of methane on a platinum foil”, Catal. Today, Vol. 21, pp. 461-470, 1994.
18. Deutschmann, O., Schmidt, R., Behrendt, F., Warnatz, J., “Numerical modeling of catalytic ignition”, Proc. Combust. Inst., Vol. 26, pp. 1747-1754, 1996.
19. Hickman, D.A., Schmidt, L.D.,”Step in CH4 oxidation on Pt and Rh surfaces: High-temperature reactor simulation,” AIChE, Vol.39, No7, pp.1164-1177., 1993.
20. Hellsing, B., Kasemo, B., Zhdanov, V.P., ”Kinetics of the hydrogen-oxygen reaction on platinum”, Langmuir, Catal., Vol.132, pp.210-228, 1991.
21. Fridell, E., Rosen, A., ”A Laser-Induced Fluorescence Study of OH Desorption From Pt in H2O/O2 and H2O/H2Mixtures”, Vol.10, pp.699-708, 1994.
22. Aghalayam, P., Park, Y.K., Vlachos, D.G., “A detailed surface reaction mechanism for CO oxidiation on Pt,”Pro”, Combust. Inct., Vol.28 pp.1331-1339, 2000.
23. Dogwiler, U., Benz, P., Mantzaras, J., Kaeppeli, B., Bombach, R., Arnold, A., ”Homogeneous ignition of methane-air mixtures over Platinum: comparison of measurements and detailed numerical predictions”, Proc. Combust. Inst., Vol.27, pp.2275-2282, 1998.
24. Koop, J., Deutschmann, O., “Detailed surface reaction mechanism for Pt-catalyzed abatement of automotive exhaust gases”, Applied Catalysis B: Environmental, Vol. 91, pp. 47-58, 2009.
25. Zheng, X., Mantzaras, J., Bombach, R., “Homogeneous combustion of fuel-lean syngas mixtures over platinum at elevated pressures and preheats”, Combustion and Flame, Vol. 160, pp. 155-169, 2013.
26. Wu, C.Y., Yang, S.Y., Chen, K.H., Zeng, Q.H., Hong, Y.S., “Catalytic combustion of Hydrogen with CO2/O2 using Pt-coated-γ-Al2O3 beads reactor”, National Conference on Combustion and Energy 24th, pp.734-740, 2014.
27. Li, Y.H., Chen, G.B., Wu, F.H., Chao Y.C., “Enhancement of methane combustion in microchannels: Effects of catalyst segmentation and cavities”, Chemical Engineering Journal, Vol. 160, pp. 715-722, 2010.
28. Li, Y.H., Chen, G.B., Wu, F.H., Cheng, T.S., Chao Y.C., “Effects of catalyst segmentation with cavities on combustion enhancement of blended fuels in a micro channel”, Combustion and Flame, Vol. 159, pp. 1644–1651, 2012.
29. Li, Y.H., Chen, G.B., Wu, F.H., Cheng, T.S., Chao Y.C., “Combustion characteristics in a small-scale reactor with catalyst segmentation and cavities,” Proceedings of the Combustion Institute, Vol. 34, pp. 2253–2259, 2013.
30. Anderssion, K., Johnsson, F., “Flame and radiation characteristics of gas-fired O2/CO2 combustion”, Fuel, Vol. 86, pp. 656-68, 2007.
31. Andersson, K., Johnsson, F., Lechner B., “Radiation intensity of propane-fire oxy-fuel flame: implications for soot formation”, Energy &Fuels, Vol. 22, pp. 1535-41, 2008.
32. Dryer, F. L., Naegeli, D., and Glassman, I., “Temperature Dependence of the Reaction CO+OH=CO2+H”, Combust. Flame, 17, pp. 270-272, 1971.
33. Liu, T.Y., Yuan, T., “A kinetic analysis of CO2 addition in CH4/O2 combustion” National Cheng Kung University, 2013.
34. Miller, J.A., Bowman, C.T.,”Mechanism and modeling of nitrogen chemistry in combustion,” Pro.Combust. Sci, Vol.15, pp.287-338, 1989.