| 研究生: |
李昌達 Lee, Chang-Ta |
|---|---|
| 論文名稱: |
Eps8 在骨重塑中所扮演的角色 The involvement of Eps8 in bone remodeling |
| 指導教授: |
呂增宏
Leu, Tzeng-Horng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 藥理學研究所 Department of Pharmacology |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 中文 |
| 論文頁數: | 43 |
| 中文關鍵詞: | Eps8 、蝕骨細胞 、RANKL |
| 外文關鍵詞: | Eps8, osteoclast, RANKL |
| 相關次數: | 點閱:187 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
破骨細胞是骨吸收重要的多核巨噬細胞,而多核巨噬細胞主要是由單核細胞前體細胞的細胞融合而形成的,是骨重塑必要的條件。破骨細胞的形成主要是透過 NF-κB、Src、TRAF6 和 NFATc1 的調節。而之前研究指出 Src 會和 TRAF6 結合並且活化 RANKL 的路徑。我們的實驗室之前研究也就發現,EPS8 表達在纖維細胞和上皮癌細胞會受到 Src 調控,同時 Eps8 會活化 Src 的活性。因此,我們預測 Eps8 可能也參與在破骨細胞形成的路徑當中。我們的實驗結果指出,在 RANKL 刺激下,Eps8 表達會上升。EPS8 減少則會抑制 RANKL 刺激 RAW264.7 細胞和 BMDM 形成破骨細胞。同時,我們也發現,EPS8 減少會抑制RANKL 誘導的基因表達,像是 src、 trap、nfatc-1。此外,Maf-b 是破骨細胞分化的負調控,當 Eps8 減少時 RANKL 也不會抑制 maf-b 基因的表達。由於 Src 減低並不會影響 RANKL 促進 Eps8 表達,這些結果顯示 Eps8 可能作用在 Src 的上游而參與破骨細胞的形成。
SUMMARY
Osteoclasts are bone-resorbing, multinucleated giant cells that are essential for bone remodeling and are formed through cell fusion of mononuclear precursor cells. Src, NF-κB, TRAF6 and NFATc1 have been implicated in osteoclastogenesis, the formation of osteoclast. Upon RANK is activated by its ligand RANKL, Src binds to TRAF6 and activates RANK-mediated signaling. Given that Eps8 expression is regulated by Src activity which in turn, activates Src in fibroblast and epithelial cancer cells, Eps8 might also involve in osteoclastogenesis. Indeed, Eps8 expression was increased in RANKL-stimulated RAW264.7 cells and BMDM. Silencing eps8 by siRNA not only reduced eps8 expression but also decreased the RANKL-induced gene expression of src, trap and nfatc-1. In addition, the expected attenuation of the negative regulator maf-b was not affected in these cells. Since Src knockdown or overexpression did not affect RANKL-induced Eps8 expression, our data strongly suggested that Eps8 might act in the upstream of Src during osteoclastogenesis.
1. Fazioli F, Minichiello L, Matoska V, Castagnino P, Miki T, Wong WT et al (1993). Eps8, a substrate for the epidermal growth factor receptor kinase, enhances EGF-dependent mitogenic signals. EMBO J 12: 3799-3808.
2. Maa MC, Lai JR, Lin RW, Leu TH (1999). Enhancement of tyrosyl
phosphorylation and protein expression of eps8 by v-Src. Biochim Biophys
Acta 1450: 341-351.
3. Wong WT, Carlomagno F, Druck T, Barletta C, Croce CM, Huebner K,
Kraus MH, Di Fiore PP (1994). Evolutionary conservation of the EPS8
gene and its mapping to human chromosome 12q23-q24. Oncogene,
9(10):3057-3061.
4. Touhara K, Inglese J, Pitcher JA, Shaw G, Lefkowitz RJ. (1994). Binding
of G protein beta gamma-subunits to pleckstrin homology domains. J
Biol Chem. 269:10217-10220
5. Maa MC, Hsieh CY, Leu TH (2001). Overexpression of p97Eps8 leads to cellular transformation: implication of pleckstrin homology domain in p97Eps8-mediated ERK activation. Oncogene 20: 106-112.
6. Matoskova B, Wong WT, Salcini AE, Pelicci PG, Di Fiore PP (1995).
Constitutive phosphorylation of eps8 in tumor cell lines: relevance to malignant transformation. Mol Cell Biol 15: 3805-3812.
7. Karlsson T, Songyang Z, Landgren E, Lavergne C, Di Fiore PP, Anafi M et al (1995). Molecular interactions of the Src homology 2 domain protein Shb with phosphotyrosine residues, tyrosine kinase receptors and Src homology 3 domain proteins. Oncogene 10: 1475-1483.
8. Matoskova B, Wong WT, Seki N, Nagase T, Nomura N, Robbins KC et al (1996). RN-tre identifies a family of tre-related proteins displaying a novel potential protein binding domain. Oncogene 12: 2563-2571.
9. Biesova Z, Piccoli C, Wong WT (1997). Isolation and characterization of e3B1, an eps8 binding protein that regulates cell growth. Oncogene 14: 233-241.
10. Scita G, Nordstrom J, Carbone R, Tenca P, Giardina G, Gutkind S et al
(1999). EPS8 and E3B1 transduce signals from Ras to Rac. Nature 401:
290-293.
11. Maa MC, Lee JC, Chen YJ, Lee YC, Wang ST, Huang CC et al (2007).
Eps8 facilitates cellular growth and motility of colon cancer cells by
increasing the expression and activity of focal adhesion kinase. J Biol
Chem 282: 19399-19409.
12. Chen YJ, Shen MR, Maa MC, Leu TH (2008). Eps8 decreases
chemosensitivity and affects survival of cervical cancer patients. Mol
Cancer Ther 7: 1376-1385.
13. Xu M, Shorts-Cary L, Knox AJ, Kleinsmidt-DeMasters B, Lillehei K,
Wierman ME (2009). Epidermal growth factor receptor pathway substrate
8 is overexpressed in human pituitary tumors: role in proliferation and
survival. Endocrinology 150: 2064-2071.
14. Yap LF, Jenei V, Robinson CM, Moutasim K, Benn TM, Threadgold SP et al (2009). Upregulation of Eps8 in oral squamous cell carcinoma promotes cell migration and invasion through integrin-dependent Rac1 activation. Oncogene 28: 2524-2534.
15. Maa MC, Hsieh CY, Leu TH (2001). Overexpression of p97Eps8 leads to cellular transformation: implication of pleckstrin homology domain in p97Eps8-mediated ERK activation. Oncogene 20: 106-112.
16. Leu TH, Yeh HH, Huang CC, Chuang YC, Su SL, Maa MC
(2004).Participation of p97Eps8 in Src-mediated transformation. J Biol
Chem 279: 9875-9881.
17. Hadjidakis DJ, Androulakis (2006). Women's Health and Disease:
Gynecologic, Endocrine, and Reproductive Issues. Annals of the New
York Academy of Sciences Volume 1092.
18. Burge R, Dawson-Hughes B, Solomon DH, Wong JB, King A, Tosteson
A (2007). Incidence and economic burden of osteoporosis-relatedfractures
in theUnited States, 2005-2025. Journal of the American Society for
Bone and Mineral Research . 22(3):465-475.
19. Brauer CA, Coca-Perraillon M, Cutler DM, Rosen AB (2009). Incidence
and mortality of hip fracturesin the United States. Journal of the
American Medical Association , 302(14):1573-1579.
20. William J, Boyle W, Scott Simonet, David L, Lacey (2003). Osteoclast
differentiation and activation. Nature, 423:337-342.
21. Jimi E, Akiyama S, Tsurukai T, Okahashi N, Kobayashi K, Udagawa N,
Nishihara T, Takahashi N, Suda T (1999). Osteoclast differentiation factor
acts as a multifunctional regulator in murine osteoclast differentiation and
function. Journal of Immunology, 163:434-442.
22. O'Brien EA, Williams JH, Marshall MJ (2001). Osteoprotegerin is
produced when prostaglandin synthesis is inhibited causing osteoclasts to
detach from the surface of mouse parietal bone and attach to the
endocranial membrane. Bone, 28:208-214.
23. Takahashi N, Udagawa N, Suda T (1999). A new member of tumor
necrosis factor ligand family, ODF/OPGL/TRANCE/RANKL, regulates
osteoclast differentiation and function. Biochemical and Biophysical
Research, 256:449-455.
24. Aarden EM, Burger EH, Nijweide PJ (1994). Function of osteocytes in
bone. Journal of Cellular Biochemistry, 55:287-299.
25. Nakashima T, Kobayashi Y, Yamasaki S, Kawakami A, Eguchi K, Sasaki
H,Sakai H (2000). Protein expression and functional difference of
membrane-bound andsoluble receptor activator of NF-kappaB ligand:
modulation of the expressionby osteotropic factors and
cytokines.Biochemical and Biophysical ResearchCommunications, 275:
768-775.
26. Lacey DL, Timms E, Tan H L et al (1998). Osteoprotegerin ligand is a
cytokine that regulates osteoclast differentiation and activation. Cell,
93( 2) : 165-176.
27. Yasuda H, Shima N, Nakagawa N, et al. (1998). Osteoclast differentiation
factor is a ligand for osteoprotegerin /osteoclastogenesis-inhibitory factor
and is identical to TRANCE /RANKL. Proc Natl Acad Sci USA, 95 ( 7 ) :
3597-3602.
28. Wong BR, Rho J, Arron J et al (1997). TRANCE is a novel ligand of
the tumor necrosis factor receptor family that activates c-jun Nterminal
kinase in T cells. J Biol Chem, 272( 40) :25190-25194.
29. Anderson DM, Maraskovsky E, Billingsley WL et al (1997) A homologue
of the TNF receptor and its ligand enhance T-cell growth and
dendritic-cell function .Nature, 390( 6656) : 175-179
30. Tat SK, Pelletier JP, Lajeunesse D et al (2008). Differential modulation
of RANKL isoforms by human osteoarthritic subchondral bone
osteoblasts: Influence of osteotropic factors. Bone, 43( 2) : 284-291
31. Karsenty G, Wagner EF (2002). Reaching a genetic and molecular
understanding of skeletal development. Cell. 2( 4) : 389-406
32. Theill LE, Boyle WJ, Penninger JM (2002). RANK-L and RANK: T
Cells, bone loss and mammalian evolution. Annu Rev Immunol, 20:
795-823
33. Parfitt AM (1988). Bone histomorphometry: proposed system for
standardization of nomenclature, symbols, and units. Calcif. Tissue Int,
42:284–286.
34. Yoshiteru M, Yuiko S, Tami K, Shigeyuki Y, Tomoaki M, Hiroya K, Eri K,
Atsuhiro F, Wu H, Kana M, Toshimi T, Hideo M, Morio M, Pierre C ,
Randall S, Shigeaki K, Yoshiaki T, Takeshi M (2013). HIF1α is required
for osteoclast activation by estrogen deficiency in postmenopausal
osteoporosis. PNAS, 41: 16568–16573.
35. Sorenson MG, HenriksenK, Dziegiel MH (2006). Estrogendirectly
attenuateshuman osteoclastogenesis, buthasno efecton resorption by
matureosteoclasts. DNA Cell Biol, 25(8) : 475-483.