| 研究生: |
李秉融 Li, Ping-Jung |
|---|---|
| 論文名稱: |
點排式通風排煙系統與水霧系統對隧道火災之煙控性能評估 Smoke Control Performance Evaluation of Tunnel Fire with the Point-Extraction Ventilation System and Water Spray System |
| 指導教授: |
陳昭旭
Chen, Chao-Shi |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 資源工程學系 Department of Resources Engineering |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 中文 |
| 論文頁數: | 118 |
| 中文關鍵詞: | 隧道火災 、縱流式通風 、點排式通風排煙系統 、水霧 、火災動態模擬 |
| 外文關鍵詞: | Tunnel fire, Longitudinal ventilation, Point-extraction ventilation system, Water Spray, FDS |
| 相關次數: | 點閱:46 下載:9 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隧道係屬細長之地下結構物,倘若發生火災事故時,較不易進行避難與救災。近年來長公路隧道不斷增加,對於隧道火災之應變,除了結合以往必備的通風與排煙系統,更導入水霧系統,添增火災控制的能力。
本研究以全尺度模擬搭配縮小尺度實驗驗證之方式進行隧道火災之研究。縱流式通風模擬結果顯示隧道長度對臨界速度幾乎沒有影響。然而,隧道長度越長,通風量要越大,才能產生與較短隧道一樣速度之縱向氣流。因此,電腦模擬應以全尺度隧道進行模擬,方能貼近實際情況,並避免發生低估之誤差。
點排式通風排煙模擬方面,在本研究設定之先決條件下,如果燃燒時間維持甚久,甚至火勢增大,煙層將會無法受到控制,並往上下游蔓延擴散,單口與三口之點排式通風排煙系統,其原始運轉參數只能防止約略5 MW或更小的火災所產生之煙氣回流。對於單一排煙口之設計,調整上下游噴流式風機之通風速度且使速度差在15 m/s以內,可有效將煙層局限,並能夠降低需求排煙量;對於三口排煙口之設計方式,把排煙口數量從三口減少為二口時,仍具有同樣的煙控效能。另外,三口排煙口之設計方式相對於單一排煙口之設計,能以較低的排煙量將煙層限制在煙控區域之內。
水霧系統對於火場降溫、逆煙層縮減等正向之影響效果,但須注意水霧放射後,會造成煙氣紊亂並充斥整個煙控區域,使得能見度變差。水霧啟動區為火災區與上游鄰近第一區的2區放射方式,可能發生起火處位於水霧覆蓋範圍的邊界而有覆蓋不完整之疑慮,建議縮減單區放射範圍而增加下游鄰近第一區放射,可減少部分之用水量,並增強下游區域的防護能力,但須增加一齊開放閥之用量,造成成本增加,故在防護效果與施工成本之間須審慎評估。
This research conducts full-scale simulation and model-scale experiments to explore various tunnel fire scenarios. The results show that the critical velocities for the same fire size in different tunnel lengths are similar. However, to generate the same longitudinal flow velocity in longer tunnels, the quantity of ventilation must be increased. The conventional settings of the point-extraction ventilation systems could only prevent the smoke backflow generated from a 5 MW fire or smaller. For the single-point extraction, the workload of a performance-based design is reduced. The three-point and two-point extraction confined the smoke layer within the smoke control zone better and with a lower exhaust rate than single-point extraction. However, the range of high-temperature smoke layers under the three-point extraction design is wider than the single-point extraction design. The water spraying system affects fire cooling and reduces smoke backlayering. However, water spraying causes turbulence and lowers the smoke layer, filling the smoke control zone and worsening the visibility. Fire at the boundary of the water spraying coverage area leads to incomplete coverage. If the water spraying zone is increased to the first downstream zone, the protection capacity of the downstream zone is increased. A balance between the protection effect and the cost is essential.
1. 中華民國交通部,2010,「公路隧道消防安全設備設置規範」。
2. 中華民國交通部公路總局,「台9線蘇花公路山區路段改善計畫消防救災規劃」,網址:https://www.thb.gov.tw/sites/ch/modules/news/news_details?node=eeb33aa6-58a1-4d5d-b6aa-28dd4d5270b0&id=42b03e81-fe8e-4620-8c35-1d4600cd2365,2021.01.21。
3. 中華民國交通部交通部公路總局-第四區養護工程處,「認識蘇花改」,網址:
https://thbu4.thb.gov.tw/page?node=6861c85c-e12e-468e-b885-f3e9d29d40ed,2021.01.12。
4. 謝敬義,王文禮,張森源,2000,「隧道工程用語辭彙-中華民國隧道協會系列叢書3」,九樺。
5. 王日勝,廖正杰,2014,「公路隧道消防與通風系統」,第一屆蘇花改工程技術論壇,2014.09.10。
6. 朱延年、鄭紹材,2005,「公路長隧道防災管理之研究」,中華大學營建管理研究所,碩士論文。
7. 李伊平,2009,「以數值模擬方法研究火場模式對隧道火場環境之影響」,教專研,098P-045。
8. 李伊平,2013,「隧道消防安全性能設計研究」,桃園創新技術學院教師專題研究計畫,教專研,102P-040。
9. 李伊平、簡賢文、卓子陽、鍾偉庭、王思涵,2011,「隧道堵車模式對隧道火災煙流及火場環境影響之研究」,行政院國家科學委員會專題研究計畫,NSC 98-2221-E-253-005-MY2。
10. 李宏徹、簡賢文、陳發林、熊光華,2004,「長隧道災害應變及救援作業探討-以北宜高速公路雪山隧道為例」,中國岩石力學與工程學會岩石力學與工程學報,第三十二卷,增刊二,頁5228-5234。
11. 沈子勝,2006,「公路隧道防災設備設計需及替代性之研究」,行政院國家科學委員會專題研究計畫,NSC 94-2625-Z-015-004。
12. 沈子勝、蘇家彥、黃育祥,「縱向排煙與滅火系統對隧道火點下游堵車情境之分析」。
13. 周胤德、忻元發、張世忠,2004,「從近年國內外之重大公路長隧道事故探討隧道營運管理安全設施策略」,臺灣公路工程(Taiwan Highway Engineering),第三十卷,第七期,頁2-13。
14. 易逸波、黃奕豪、施威任、宋鴻祥,2011,「應用CFD軟體進行八卦山隧道火災煙流模擬之研究」,中國鑛冶工程學會年會論文,第五十五卷,第一期,頁83-94。
15. 施亮輝、邱豪磊、林啟基,2011,「公路隧道排煙與避難逃生系統之整合應用」,中華技術專題報導,第91期,頁132-143。
16. 施亮輝、蔡福順、林啟基、邱豪磊、章永強,2018,「公路隧道自動滅火設備應用於滅火與降溫之探討」,中華技術專題報導,第117期,頁132-145。
17. 施亮輝、蔡福順、林啟基、邱豪磊、曾豊育,2015,「公路長隧道消防安全設施規劃分析」,中華技術專題報導,第107期,頁38-51。
18. 范立武、吳貫遠,2018,「撒水系統對點排式隧道火災之分析-以仁水隧道為例」,中央警察大學消防科研究所,碩士論文。
19. 陳建忠、蕭邦安、何三平、蒲仁勇、謝煒東、林展仰,2006,「研究助理建築消防水系統滅火實驗與撒水頭作動性能評估」,內政部建築研究所研究報告,095301070000G3-215。
20. 張庭彰、蘇志偉、藍紅玉,2009,「公務部門危機事件處理模式之研究-以八卦山隧道火災處理為例」,T&D飛訊,第82期。
21. 蕭力愷、黃德清、廖訓禎、林慶元、沈子勝,2011,「雪山隧道大客車火災事故之模擬研究」。
22. 簡賢文,2013,「台灣公路隧道安全防護研究與政策推動」,(公路)長隧道防火安全研討會。
23. Atkinson, G.T., Wu, Y., 1996, “Smoke control in sloping tunnels, Fire Safety Journal, Vol. 27, pp. 335-341.
24. Babrauskas, V., 2002, “Heat Release Rates, In: DiNenno PJ, Drysdale D, Beyler CL et al. (eds), The SFPE Handbook of Fire Protection Engineering, 3rd Edition. National Fire Protection Association, Quincy, MA, USA, pp. 3–1–3–37.
25. Bakke, P., Leach, S.J., 1965, “Turbulent diffusion of a buoyant layer at a wall. Applied Scientific Research, Vol. 15, pp. 97-136.
26. Brousse, B., Perard, M., Voeltzel, A., Le Botlan Y., 2001, “Ventilation and fire tests in the Mont Blanc Tunnel to better understand the catastrophic fire of March 24th 1999. In: Proceedings of 3rd International Conference on Tunnel Fires and Escape from Tunnels, Washington DC, USA, pp. 211–222.
27. BD 78/99, 1999, “Design manual for roads and bridges”.
28. Caldecott Tunnel Near Oakland California, April 7, 1982. Highway Accident Report No. 3665A. National Transportation Safety Board, Washington D. C.
29. Carvel, R.O., Beard, A.N., Jowitt, P.W., 2001, “How much do tunnels enhance the heat release rate of Fires?” In: Proceedings of 4th International Conference on Safety in Road and Rail Tunnels, Madrid, Spain, 2–6 April 2001. pp. 457–466.
30. Carvel, R.O., Beard, A.N., Jowitt, P.W., 2001, “The influence of longitudinal ventilation systems on fires in tunnels.” Tunnelling and Underground Space Technology, Vol. 16, pp. 3–21.
31. Carvel, R.O., Beard, A.N., Jowitt, P.W., 2004, “The influence of longitudinal ventilation and tunnel size on HGV fires in tunnel.” In: Proceedings of 10th International Fire Science & Engineering Conference (Interflam 2004), Edinburgh, Scotland, 5–7 July 2004. Interscience Communications, pp. 815–820.
32. Carvel, R.O., Beard, A.N., Jowitt, P.W., Drysdale, D.D., 2001, “Variation of heat release rate with forced longitudinal ventilation for vehicle fires in tunnels.” Fire Safety Journal, Vol. 36, pp. 569–596.
33. Carvel, R.O., Drysdale, D.D., 2004, “The influence of tunnel geometry and ventilation on the heat release rate of a Fire.” Fire Technology, Vol. 40, pp. 5–26.
34. Chang, H.P., Ho, S.P., Chen, C.S., Chien, S.W., 2017, “Performance of a spray system in a full-scale tunnel fire test.” Tunnelling and Underground Space Technology, Vol. 67, pp. 167–174.
35. Chen C.F., Shu, C.M., Ho, S.P., Chien, S.W., 2018, “Effects of ventilation and water spray in a model-scale tunnel fire.” Fire Technology, Vol. 54, pp. 75–96.
36. Chen L.F., Hu L.H., Tang W., Yi L., 2013, “Studies on buoyancy driven two-directional smoke flow layering length with combination of point extraction and longitudinal ventilation in tunnel fires.” Fire Safety Journal, Vol. 59, pp. 94–101.
37. Chow, W.K., Gao, Y., Zhao, J.H., Dang, J.F., Chow, C.L., Miao, L., 2015, “Smoke movement in tilted tunnel fires with longitudinal ventilation.” Fire Safety Journal, Vol. 75, pp.14–22.
38. Danziger, N.H., Kennedy, W.D., 1982, “Longitudinal ventilation analysis for the Glenwood Canyon Tunnels.” In: Proceedings of 4th International Symposium on the Aerodynamics and Ventilation of Vehicle Tunnels, York, UK, pp. 169–186.
39. DiNenno, P.J., Drysdale, D., Beyler, C.L., Walton W.D., Custer, R.L.P., Hall, J.R., Jr., Watts, J.M., Jr., 2002, “SFPE Handbook of Fire Protection Engineering.” 3rd Edition.
40. Drysdale, D., 1999, “An Introduction to Fire Dynamics.” 2nd Edition, John Wiley & Sons.
41. Fires in Transport Tunnels, 1995, “Report on full-scale tests; EUREKA project EU 499 FIRETUN.” editor: Studiengesellschaft Stahlanwendung e.V., Düsseldorf.
42. Gannouni, S., Maad, R.B., 2016, “Numerical analysis of smoke dispersion against the wind in a tunnel fire.” Journal of Wind Engineering and Industrial Aerodynamics, Vol. 158, pp. 61–68.
43. Haack, A., 1995, “Introduction to the EUREKA project/BMBF” research project Fire protection in Underground transportation facilities.", pp. 6–18.
44. Heselden, A.J.M., 1976, “Studies of fire and smoke behaviour relevant to tunnels.” In: Proceedings of 2nd International Symposium on the Aerodynamics and Ventilation of Vehicle Tunnels, Cambridge, England.
45. Heskestad, G., 1972, “Modeling of enclosure fires.” In: Proceedings of 14th Symposium (International) on Combustion, The Pennsylvania State University, USA, August 1972, pp. 1021–1030.
46. Heskestad, G., 1975, “Physical modeling of fire.” Journal of Fire and Flammability, Vol. 6, pp. 253–273.
47. Heskestad, G., 2002, “Scaling the interaction of water sprays and flames.” Fire Safety Journal, Vol. 37, pp. 535–548.
48. Heskestad, G., 2003, “Extinction of gas and liquid pool fires with water spray.” Fire Safety Journal, Vol. 38, pp. 301–317.
49. Hinkley, P.L., 1970, “The flow of hot gases along an enclosed shopping mall a tentative theory.” Fire Research Note, No. 807, Fire Research Station, U.K.
50. Hu, L.H., Huo, R., Chow, W.K., 2008, “Studies on buoyancy-driven back-layering flow in tunnel fires.” Experimental Thermal and Fluid Science, Vol 32, pp. 1468–1483.
51. Ingason, H., 1994, “Small scale test of a road tanker fire.” In: Ivarson E (ed) International Conference on Fires in Tunnels, Borås, Sweden, SP Swedish National Testing and Research Institute, pp. 238–248.
52. Ingason, H., 2012, “Fire Dynamics in Tunnels.” In: Beard AN, Carvel RO (eds) In the Handbook of Tunnel Fire Safety, 2nd Edition. ICE Publishing, London, pp. 273–304.
53. Ingason, H., Li, Y.Z., 2010, “Model scale tunnel fire tests with longitudinal ventilation.” Fire Safety Journal, Vol. 45, pp. 371–384.
54. Ingason, H., Li, Y.Z., 2011, “Model scale tunnel fire tests with point extraction ventilation.” Journal of Fire Protection Engineering, Vol. 21(1), pp. 5–36.
55. Ingason, H., Li, Y.Z., Lönnermark, A., 2015, “Tunnel Fire Dynamics.” ISBN 978-1-4939-2198-0, ISBN 978-1-4939-2199-7 (eBook), DOI 10.1007/978-1-4939-2199-7.
56. Ingason, H., Lönnermark, A., 2005, “Heat release rates from heavy goods vehicle trailer fires in tunnels.” Fire Safety Journal, Vol. 40, pp. 646–668.
57. Karlsson, B., Quintier, J.G., 2000, “Enclosure Fire Dynamics.” CRC Press.
58. Lacroix, D., 1997, “New French recommendations for fire ventilation in road tunnels.” In: Proceedings of 9th International Conference on the Aerodynamics and Ventilation of Vehicle Tunnels, Aosta Valley, Italy.
59. Larson, D.W., Reese, R.T., Wilmot, E.L, “The Caldecott Tunnel fire thermal environments. Regulatory Considerations and Probabilities.” Sandia National Laboratories.
60. Lemaire A., Van De Leur P.H.E., Kenyon Y.M., 2002, “Safety Proef: TNO Metingen Benelux tunnel-Meetrappor.” TNO-Rapport 2002-CVB-R05572.
61. Li, J., Li, Y.F., Cheng, C.H., Chow, W.K., 2019, “A study on the effects of the slope on the critical velocity for longitudinal ventilation in tilted tunnels.” Tunnelling and Underground Space Technology, Vol. 89, pp. 262–267.
62. Li, Y.Z., Fan, C.G., Ingason, H., Lönnermark, A., Ji, J., 2016, “Effect of cross section and ventilation on heat release rates in tunnel fires.” Tunnelling and Underground Space Technology, Vol. 51, pp. 414–423.
63. Li, Y.Z., Ingason, H., 2012, “The maximum ceiling gas temperature in a large tunnel fire.” Fire Safety Journal, Vol. 48, pp. 38–48.
64. Li, Y. Z., Ingason, H., 2017, “Effect of cross section on critical velocity in longitudinally ventilated tunnel fires.” Fire Safety Journal, Vol. 91, pp. 303–311.
65. Lin, M.H., Ho, S.P., 2006, “The Performance analysis of longitudinal ventilation systems in long road tunnels.” pp. 4–7.
66. Lönnermark, A., Ingason, H., 2005, “Gas temperatures in heavy goods vehicle fires in tunnels.” Fire Safety Journal, Vol. 40, pp. 506–527.
67. McGrattan, K., Hostikka, S., McDermott, R., Floyd, J., Weinschenk, C., Overholt, K., 2019, “Fire Dynamics Simulator User’s Guide, 6th Edition.” NIST Special Publication 1019-5, U.S. Government Printing Office, US.
68. NFPA 92, 2021, “Standard for Smoke Management Systems in Malls, Atria, and Large Spaces.” 2021 Edition. National Fire Protection Association, Quincy, MA.
69. NFPA 502, 2020, “Standard for Road Tunnels, Bridges, and Other Limited Access Highways.” 2020 Edition. National Fire Protection Association, Quincy, MA.
70. Oka, Y., Atkinson, G.T., 1995, “Control of smoke flow in tunnel fires.” Fire Safety Journal, Vol. 25, pp. 305–322.
71. Parsons Brinckerhoff Quade & Douglas, Inc., 1980, “Subway Environment Design Handbook, Vol. II, Subway Environment Simulation (SES) Computer Program Version 3 Part 1: User's Manual.” Prepared in draft for the U.S. Department of Transportation.
72. PIARC, 1999, “Fire and Smoke Control in Road Tunnels.” 05.05.B.
73. Promat. Tunnel fire safety-fire protection-Fire curves-Types of fire exposure. Retrieved August 2019, from: https://www.promat-tunnel.com/en/advices/fire-protection/fire%20curves
74. Quintiere, J.G., 1989, “Scaling applications in fire research.” Fire Safety Journal, Vol. 15, pp. 3–29.
75. Richtlinien für Ausstattung und Betrieb von Tunneln (RABT), 1985, “Ausgabe 1985 edn, Forschungsgesellschaft für Straßen-und Verkehrswesen”.
76. Saito, N., Yamada, T., Sekizawa, A., Yanai, E., Watanabe, Y., Miyazaki, S., 1995, “Experimental study on fire behavior in a wind tunnel with a reduced scale model.” In: Proceedings of 2nd International Conference on Safety in Road and Rail Tunnels, 1995, Granada, Spain, pp. 303–310.
77. Studiensgesellschaft Stahlanwendung e. V., 1995, “Fires in transport tunnels: Report on full-scale tests.” EUREKA-Project EU499: FIRETUN, Düsseldorf, Germany.
78. Tang F., Mei F.Z., Wang Q., He Z., Fan C.G., Tao C.F., 2017, “Maximum temperature beneath the ceiling in tunnel fires with combination of ceiling mechanical smoke extraction and longitudinal ventilation.” Tunnelling and Underground Space Technology, Vol. 68, pp. 231–237.
79. Thomas, P.H., 1958, “The movement of buoyant fluid against a stream and the venting of underground fires.” Fire Research Note, No. 351, Fire Research Station, U.K.
80. Thomas, P.H., 1968, “The movement of smoke in horizontal passages against an air flow.” Fire Research Note, No. 723, Fire Research Station, U.K.
81. Vauquelina, O., Wu, Y., 2006, “Influence of tunnel width on longitudinal smoke control.” Fire Safety Journal, Vol. 41, pp. 420–426.
82. William D.Walton, Philip H, “Thomas. Estimating Temperatures in Compartment Fires.” SFPE Handbook, 3rd Edition, Section Three, Chapter 6. National Fire Protection Association, Quincy, MA, USA.
83. Wu, Y., Bakar, M.Z.A., 2000, “Control of smoke flow in tunnel fires using longitudinal ventilation systems - a study of the critical velocity.” Fire Safety Journal, Vol 35, pp. 363–390.
84. Zabetakis, M.G., Burgess, D.S., 1961, “Research on the hazards associated with the production and handling of liquid hydrogen.” US Bureau of Mines, Pittsburgh, PA.