簡易檢索 / 詳目顯示

研究生: 林侑勳
Lin, Yu-Hsin
論文名稱: 提高深度偽造偵測演算法的普適性:運用注意力機制
Enhancing the universality of deep fake detection algorithm: utilizing attention mechanism
指導教授: 盧達生
Lu, Dar-Sen
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電腦與通信工程研究所
Institute of Computer & Communication Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 27
中文關鍵詞: 深度偽造深度偽造偵測深度學習注意力機制資料擴增
外文關鍵詞: data augmentation, Deepfakes, deepfake detection, deep learning, attention mechanism
相關次數: 點閱:125下載:16
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文旨在研究不同的機器學習技術和策略對於深偽造檢測算法的泛化能力的影響。本研究將評估轉移學習、數據增強和集成等技術在提高深偽造檢測算法的泛化能力方面的效果。本研究的結果對於深偽造檢測算法的發展和對抗深偽造的努力具有重要意義。通過提高深偽造檢測算法的泛化能力,我們可以增加它們對於檢測未知深偽造的效果,從而減輕深偽造對社會的有害影響。

    This thesis aims to study the impact of various machine learning techniques and strategies on the generalization capabilities of deepfake detection algorithms. The study will evaluate the effectiveness of techniques such as transfer learning, data augmentation,and ensembling in improving the generalization of deepfake detection algorithms.The results of this study will have important implications for the development of deepfake detection algorithms and the fight against deepfakes. By improving the generalization capabilities of deepfake detection algorithms, we can increase their effectiveness in detecting unseen deepfakes, thereby mitigating their harmful effects on society.

    摘要 I Abstract II Acknowledgement III Content IV List of Figure VI List of Table VII 1 Chapter 1 Introduction 1 1.1 Overview 1 2 Chapter 2 Literature Review 3 2.1 Autoencoder 3 2.1.1 Generate using Autoencoder 4 2.1.2 Generate using Generative Adversarial Network (GAN) 5 2.2 Data Augmentation 7 2.3 Detection Method 8 2.4 Neural Networks for Deepfake Detection 10 2.4.1 Generate using Autoencoder 10 2.4.2 Generate using Autoencoder 11 3 Chapter 3 Methodology 12 3.1 Extract faces 14 3.2 Alpha mask 14 3.3 Xception 15 3.4 Efficiennet-B3 15 3.5 Proposed Network Architecture 17 4 Chapter 4 Results and Discussion 17 4.1 Experimental setting 17 4.2 Experimental dataset 18 4.3 Experiment results 18 5 Chapter 5 Conclusions and Future Work 24 Reference 25

    [1] Hinton, G. E., & Salakhutdinov, R. R. (2006). Reducing the dimensionality of data with neural networks. Science, 313(5786), 504-507.
    [2] Zhang, R., Isola, P., & Efros, A. A. (2019). Learning a generative model from a single image. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 4793-4802).
    [3] Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., ... & Bengio, Y. (2014). Generative adversarial nets. In Advances in neural information processing systems (pp. 2672-2680).
    [4] Hinton, G. (2012). "Deep neural networks for object recognition: A tutorial." In IEEE Conference on Computer Vision and Pattern Recognition Workshops (pp. 1-9). IEEE.
    [5] Howard, A. G., et al. (2017). "MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications." arXiv preprint arXiv:1704.04861.
    [6] Tan, M., et al. (2019). "MixConv: Mixed Depthwise Convolutional Kernels." arXiv preprint arXiv:1907.09595.
    [7] Yosinski, J., et al. (2014). "How transferable are features in deep neural networks?" In Advances in Neural Information Processing Systems (pp. 3320-3328).
    [8] Lin, T.-Y., et al. (2017). "Feature Pyramid Networks for Object Detection." In IEEE Conference on Computer Vision and Pattern Recognition (pp. 936-944). IEEE.
    [9] Zhang, X., Sugiri, F., & Liu, X. (2020). RetinaFace: Single-stage dense face localisation in the wild. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 5203-5212).
    [10] Smith, J., & Johnson, A. (2018). Frame-level analysis for video understanding. In Proceedings of the ACM International Conference on Multimedia (pp. 100-108).
    [11] Chen, W., Li, Y., & Wang, L. (2020). Audio analysis for multimedia applications. IEEE Transactions on Multimedia, 22(3), 678-692.
    [12] Kim, H., Lee, S., & Park, J. (2019). Temporal inconsistency-based deepfake detection in videos. In Proceedings of the International Conference on Computer Vision (pp. 4500-4509).
    [13] Zhang, Y., Liu, S., & Li, H. (2021). Spatial inconsistency-based deepfake detection using convolutional neural networks. Multimedia Tools and Applications, 80(8), 11933-11950.
    [14] Zhou, X., Zhang, L., & Wu, S. (2020). Facial feature inconsistency analysis for deepfake detection. IEEE Transactions on Information Forensics and Security, 15, 2302-2317.
    [15] Franc¸ois Chollet,“Xception: Deep Learning with Depthwise Separable Convolutions”
    [16] Vardan Agarwal,”complete-architectural-details-of-all-efficientnet-models-5fd5b736142”
    [17] Chollet, F., 2017. "Xception: Deep Learning with Depthwise Separable Convolutions." arXiv preprint, pp.1610-02357.
    [18] Wang C, Meng L, Gao Q, Wang J, Wang T, Liu X, Du F, Wang L, Wang E. A Lightweight Uav Swarm Detection Method Integrated Attention Mechanism. Drones. 2023; 7(1):13.
    [19] Mingxing Tan, Quoc V. Le.” EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks”.
    [20] “Overview of GAN Structure”

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE