| 研究生: |
林嘉德 Lin, Jia-De |
|---|---|
| 論文名稱: |
結構對染料摻雜膽固醇所產生之彩色錐角雷射之影響 Structural influence on the color cone lasing emission in dye-doped cholesteric liquid crystals |
| 指導教授: |
李佳榮
Lee, Chia-rong |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程研究所 Institute of Electro-Optical Science and Engineering |
| 論文出版年: | 2009 |
| 畢業學年度: | 97 |
| 語文別: | 中文 |
| 論文頁數: | 105 |
| 中文關鍵詞: | 彩色錐角雷射輸出 、結構影響 、膽固醇液晶 |
| 外文關鍵詞: | cholesteric liquid crystals, color cone lasing emission, structural influence |
| 相關次數: | 點閱:88 下載:8 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本實驗室(Lee et. al.)在不久之前發現了染料摻雜膽固醇液晶中奇特的彩色錐角雷射輸出現象。為了了解引致此雷射行為的關鍵,本論文著重在探討染料摻雜膽固醇液晶結構對於其所產生之彩色錐角雷射光學效率(包含雷射臨界能量及相對斜率效率)的影響。本論文中包含了四種不同樣品的實驗結果,樣品條件分為有無表面水平配向處理以及有無經過快速熱按壓過程。其中一些重要的實驗結果條列如下:
(1)經過表面水平配向但未經過快速熱按壓處理的樣品(樣品A),其所產生的彩色錐角雷射光學效率會隨時間增加而增加。因為隨著時間增加,膽固醇液晶分子會受到表面錨定力作用自我調整,造成樣品內multi-domain間的油紋減少,所以由這些缺陷引致的散射也跟著變少。
(2)當樣品A製備完成並放置216小時後,可得到最佳的彩色錐角雷射效率。然而,經過表面水平配向且快速熱壓按處裡的樣品(樣品C),只要放置36小時就可得到和樣品A放置216小時相同的最佳彩色錐角雷射效率。這可證明快速熱按壓處理能有效縮短得到最佳化條件的時間,而且,根據觀察,此時的膽固醇液晶呈現完美的single-domain結構。
(3)在沒有表面配向的樣品中,不論有經過快速熱按壓處理(樣品B)或沒有(樣品D),彩色錐角雷射的光學效率都遠比樣品A和樣品C來的差很多。因為樣品沒有表面配向提供的錨定力,樣品內充滿許多不明顯,但是類似focal conic的缺陷,這會造成強烈的散射,也因此無法量測到彩色錐角雷射訊號。
根據實驗的結果,也可將彩色錐角雷射光學效率應用在檢驗膽固醇液晶planar結構是否良好這方面。
Novel color cone lasing emission (CCLE) in the dye-doped cholesteric liquid crystal (DDCLC) was discovered by Lee et. al. very recently. To understand the key to induce such a new lasing action, this thesis focuses on the investigation on the influence of the CLC structure on the optical efficiency (energy threshold and relative slope efficiency) of the CCLE in DDCLC cells. Four different cells with and without surface alignment and treatment of a rapid thermal-pressing processing (RTPP) are fabricated. Some important experimental results are obtained and explained as follows:
1)The optical efficiency of the obtained CCLE increases with increasing the preservation time after completing the preparation of the DDCLC cell with surface alignment and without the treatment of the RTPP (cell A). This is because the number of the oily steak in the multi-domain texture and thus the induced scattering decrease with increasing the preservation time due to the self-adjustment of CLC texture under the anchoring effect of the surface alignment.
2)An optimum efficiency of the CCLE based on cell A can be obtained if the preservation time is increased to 216 hrs. However, based on the cell with surface alignment and the treatment of the RTPP (cell C), the CCLE with a same optimum efficiency as that using cell A can be obtained when the preservation time is reduced to 36 hrs. The RTPP markedly reduce the preservation time needed to obtain an optimum efficiency of CCLE, in which a perfect single-domain planar texture can be correspondingly observed.
3)The optical efficiencies of the CCLE obtained based on the cells without surface alignment and with/without the treatment of the RTPP (cells B and D) are much poor than those based on cells A and C. This is because the fact that, without the anchoring effect of the surface alignment, the cells are always full of unapparent and small focal-conic-like defects; thus no CCLE can be measured due to strong scattering.
The optical efficiency of the CCLE can be regarded as a useful referable parameter for the quality of the CLC planar texture.
1. E. Fernndez, M. Ortuo, S. Gallego, C. Garca, A. Mrquez, A. Belndez, and I. Pascual, Proc. SPIE 7358, 73581C (2009).
2. M. Soellner, U. Vieth, K. Y. Hsu, S. H. Lin, and M. Gruber, Proc. SPIE 7358, 73580Y (2009).
3. L. O. Palomares, P. Castro-Garay, and J. A. Reyes, Appl. Phys. Lett. 94, 181903 (2009).
4. X.-J. Wang, Z.-D. Huang, J. Feng, X.-F. Chen, X. Liang, and Y.-Q. Lu, Opt. Exp. 16, 13168 (2008).
5. S. W. Leonard, J. P. Mondia, H. M. van Driel, O. Toader, and S. John, Phys. Rev. B 61, R2389 (2000).
6. Ch. Schuller, J. P. Reithmaier, J. Zimmermann, M. Kamp, and A. Forchel, Appl. Phys. Lett. 87, 121105 (2005).
7. J. Martz, R. Ferrini, F. Nesch, and L. Zuppiroli, J. Appl. Phys. 99, 103105 (2006).
8. G. Alagappan, X. W. Sun, and P. Shum, J. Opt. Soc. Am. B 23, 1478 (2006).
9. V. A. Tolmachev, T. S. Perova, S. A. Grudinkin, and V. A. Melnikov, Appl. Phys. Lett. 90, 011908 (2007).
10. V. I. Kopp, Opt. Lett. 23, 1707 (1998).
11. R. Ozaki, T. Matsui, M. Ozaki, and K. Yoshino, Appl. Phys. Lett. 82, 3593 (2003)
12. T. Matsui, M. Ozaki, and K. Yoshino, Appl. Phys. Lett. 83, 422 (2003).
13. Y. J. Liu, X. W. Sun, and P. Shum, Appl. Phys. Lett. 88, 061107 (2006).
14. L. M. Blinov, G. Cipparrone, and P. Pagliusi, Appl. Phys. Lett. 89, 031114 (2006).
15. L. M. Blinov, Appl. Phys. Lett. 90, 131103 (2007).
16. H. Kogelnik, and C. V. Shank, Appl. Phys. Lett. 18, 152 (1971).
17. P. G. de Gennes, and J. Prost, The Physics of Liquid Crystals (Oxford University Press, New York, 1993).
18. P. V. Shibaev, V. Kopp, A. Genack, and E. Hanelt, Liquid Crystals 30, 1391 (2003).
19. T.-H. Lin, and H.-C. Jau, Appl. Phys. Lett. 88, 061122 (2006).
20. Y. Matsuhisa, R. Ozaki, Y. Takao, and M. Ozaki, J. Appl. Phys. 101, 033120 (2007).
21. Y. Matsuhisa, Y. Huang, Y. Zhou, and S.-T. Wu, Appl. Phys. Lett. 90, 091114 (2007).
22. L. M. Blinov, J. Appl. Phys. 101, 053104 (2007).
23. S. M. Jeong, N. Y. Ha, Y. Takanishi, K. Ishikawa, and H. Takezoe, Appl. Phys. Lett. 90, 261108 (2007).
24. Y. Wang, T. Manabe, Y. Takanishi, K. Ishikawa, Opt. Commun. 280, 408 (2007).
25. C.-R. Lee, S.-H. Lin, H.-C. Yeh, T.-D. Ji, K.-L. Lin, T.-S. Mo, C.-T. Kuo, K.-Y.Lo, S.-H. Chang, Andy Y.-G. Fuh, and S.-Y. Huang, “Novel color cone lasing emission in a dye-doped cholesteric liquid crystal with a single pitch,” Opt. Exp. (to be published).
26. 松本正一,角田示良 合著,劉瑞祥 譯,液晶之基礎與應用 (國立編譯館出版,1996).
27. B. Bahoadur, Liquid Crystals-Applications and Uses (World Scientific Press, Singapore, 1990).
28. 趙中興,顯示器原理與技術 (全華圖書,2001).
29. 小林駿介,e世代液晶顯示器 (全華圖書,2002).
30. M. Blinov, and V. G. Chigrinov, Electrooptic Effects in Liquid Crystal Materials (Springer-Verlag, New York, 1994).
31. S. Chandrasekhar, Contemp. Phys. 29, 527 (1988).
32. F. Reintzer, O. Lehmann, and H. Keller, Mol. Cryst. Liq. Cryst. 21, 1 (1973).
33. G. W. Gray, Thermotropic Liquid Crystals (the Society of Chemical Industry, 1987).
34. P. Yeh, and C. Gu, Optics of Liquid Crystal Displays (John Wiley & Sons, Inc. New York, 2006).
35. G. R. Fowles, Introduction to Modern Optics, 2nd ed. (University of Utah, New York, 1975).
36. I.-C. Khoo, Liquid Crystals-Physical Properties and Nonlinear Optical Phenomena (John Wiley & Sons Press, New York, 1995).
37. S. Teitler and B. W. Henvis, J. Opt. Soc. Am. 60, 830 (1970).
38. D. W. Berreman, J. Opt. Soc. Am. 62, 502 (1972).
39. C. W. Oseen, Trans. Faraday Soc. 29, 833 (1933).
40. A. Sugita, H. Takezoe, Y. Ouchi, A. Fukuda, E. Kuze, and N. Goto, J. Jpn. Appl. Phys. 21, 1543 (1982).
41. 沈柯, 雷射原理教程 (亞東書局, 1990).
42. A. Yariv, and P. Yeh, Photonics, 6th ed. (Oxford University Press, New York, 2007).
43. C. V. Shank, J. E. Bjorkholm, and H. Kogelnik, Appl. Phys. Lett. 18, 395 (1971).
44. H. Kogelnik, and C. V. Shank, J. Appl. Phys. 43, 2327 (1972).
45. H. Kogelnik, Bell Syst. Tech. J. 48, 2909 (1969).
46. E. Yablonovitch, Phys. Rev. Lett. 58, 2059 (1987).
47. S. John, Phys. Rev. Lett. 58, 2846 (1987).
48. J. P. Dowling, M. Scalora, M. J. Bloemer, and C. M. Bowden, J. Appl. Phys. 75, 1896 (1994).
49. V. I. Kopp, Z.-Q. Zhang, and A. Z. Genack, Progress in Quantum Electronics 27, 369 (2003).
50. R. Ozaki, T. Shinpo, M. Ozaki, and H. Moritake, J. Jpn. Appl. Phys. 47, 1363 (2008).
51. R. Ozaki, T. Shinpo, and H. Moritake, Appl. Phys. Lett. 92, 163304 (2008).
52. Y. Huang, Y. Zhou, and S.-T. Wu, Appl. Phys.Lett. 88, 011107 (2006).
53. F. Zhang, and D.-K. Yang, Phy. Rev. E 66, 041701 (2002).
54. S. M. Morris, A. D. Ford, M. N. Pivnenko, O. Handeler, and H. J. Coles, Phy. Rev. E 74, 061709 (2006).
55. S. M. Morris, A. D. Ford, M. N. Pivnenko, and H. J. Coles, J. Appl. Phys. 97, 023103 (2005).