| 研究生: |
吳宥甫 Wu, You-Fu |
|---|---|
| 論文名稱: |
以第一原理計算及分子動力學模擬研究鋰離子電池中含六氟磷酸鋰電解液之熱分解反應 Thermal decomposition reaction of LiPF6-based electrolyte in lithium ion battery:First-principle calculation and Molecular dynamics simulations |
| 指導教授: |
許文東
Hsu, Wen-Dung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 中文 |
| 論文頁數: | 124 |
| 中文關鍵詞: | 鋰離子電池 、六氟磷酸鋰 、熱分解反應 、第一原理分子動力學模擬 |
| 外文關鍵詞: | Lithium ion batteries, LiPF6, thermal decomposition reaction, first-principle calculation, ab initio molecular dynamics simulation |
| 相關次數: | 點閱:77 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究針對LiPF6與DEC、DMC、GBL和EC等四種溶劑所形成之電解液溶液在不同氧化還原環境中的熱分解反應,以僅將溶劑視為環境因子的第一原理靜態計算及實際考慮溶質與溶劑分子間交互作用的第一原理分子動力學模擬,分別進行能量計算與分解反應過程中電荷轉移情形。
在第一部分的靜態計算中,首先考慮LiPF6及其分解產物在真空及不同溶劑環境中的幾何結構與反應能量計算。LiPF6分解為PF5及LiF的反應能在真空及溶劑中雖會隨溫度及介電常數增加而下降,但依舊是需吸收能量來進行的非自發反應。即便加上後續PF5與水反應生成POF3及氫氟酸的化學反應能計算結果,總反應仍然需要額外吸收能量才可進行,但與實驗文獻並不相符。
第二部分的第一原理分子動力學模擬部分一併考慮氧化還原環境、水分子、鋰及鋰鹽濃度對鋰鹽及電解液有機溶劑分子的分解反應所造成的影響,其中具有多餘電子的還原環境及鋰離子為電解液內分子分解反應的主要原因。模擬系統中的額外的鋰離子會形成局部的還原環境,且進一步影響與之鍵結或在其周遭的分子而導致分解反應發生。相較之下,電解液中的水分子雖亦可能加速分解反應的進行,但不是最主要造成電解液分解反應的因素,而鋰鹽濃度較高的電解液也將大幅提高發生分解反應的可能。
Nowadays, lithium-ion batteries are widely used in portable devices and electrical or hybrid vehicles due to their high energy density, long cycle life, high voltage and low cost. They, however, still have some shortcomings needed to be improved. For example, the safety, durability in high-temperature, performance in low temperature and stability. In commercial electrolyte, there include about ten ppm of water, and some literature pointed that the existence of water would affect the high-temperature performance and stability of electrolyte. In this study, the reaction energy of LiPF6 decomposition is calculated via static density functional theory calculations. The dynamic reaction process is simulated by ab-initio molecular dynamics simulations. The static calculations included the molecule optimization and reaction energy calculation, they were calculated by Gaussian03 with HF/6-31g(d) and B3LYP/6-31g(d,p). Solvent effect was considered by Onsager model. The results show that the implicit solvent model cannot correctly predict the decomposition of LiPF6 observed in experiments. In order to reflect the explicit interactions between solvent and solute molecules in electrolyte, AIMD simulations was used to further investigate the how the interaction between LiPF6 and solvent molecules affected the decomposition of LiPF6. And both of the redox environment in electrolyte and the presence of water were considered to realize the decomposition mechanism of LiPF6. Bader charge analysis were used to analyze the electron transfer process of LiPF6 in DEC, DMC, GBL and EC solution, respectively. From the results, the decomposition mechanism of LiPF6 in different solvents and redox environments can be inferred.
1. Tarascon, J.-M. and M. Armand, Issues and challenges facing rechargeable lithium batteries, in Materials for Sustainable Energy. 2001. p. 171-179.
2. WHITTINGHAM, M.S., Electrical Energy Storage and Intercalation Chemistry. Science, 1976. 192(4244): p. 1126-1127.
3. Murphy, D.W., DiSalvo, F. J., Carides, J. N. & Waszczak, J. V, Topochemical reactions of rutile related structures with lithium. Mat. Res. Bull., 1978. 13: p. 1395-1402.
4. Mizushima, K., Jones, P. C., Wiseman, P. J. & Goodenough, J. B., LixCoO2 (0<x1): a new cathode material for batteries of high energy density. Mat. Res. Bull., 1980. 15: p. 783-789.
5. Thackeray, M., Lithium-ion batteries: An unexpected conductor. Nature materials, 2002. 1(2): p. 81-82.
6. Nishi, Y., The development of lithium ion secondary batteries. The Chemical Record, 2001. 1(5): p. 406-413.
7. B., G.E., The Development and Future of Lithium Ion Batteries. The Electrochemical Society, 2017. 164(1): p. A5019-A5025.
8. Mabuchi, A., A Survey on the Carbon Anode Materials for Rechargeable Lithium Batteries. TANSO, 1994. 1994(165): p. 298-306.
9. Y. Nishi, H.A., and A. Omaru, Non aqueous electrolyte cell. 1990.
10. Mohri, M., et al., Rechargeable lithium battery based on pyrolytic carbon as a negative electrode. Journal of Power Sources, 1989. 26(3): p. 545-551.
11. Li, Q., et al., Progress in electrolytes for rechargeable Li-based batteries and beyond. Green Energy & Environment, 2016. 1(1): p. 18-42.
12. Xu, K., Nonaqueous Liquid Electrolytes for Lithium-Based Rechargeable Batteries. Vol. 104. 2004. 4303-417.
13. Matsuda, Y., Organic Electrolytes of Rechargeable Lithium Batteries, in Electrochemistry in Transition: From the 20th to the 21st Century, O.J. Murphy, S. Srinivasan, and B.E. Conway, Editors. 1992, Springer US: Boston, MA. p. 641-653.
14. Schipper, F. and D. Aurbach, A brief review: Past, present and future of lithium ion batteries. Russian Journal of Electrochemistry, 2016. 52(12): p. 1095-1121.
15. Read, J., Ether-Based Electrolytes for the Lithium/Oxygen Organic Electrolyte Battery. Journal of The Electrochemical Society, 2006. 153(1): p. A96.
16. Rauh, R.D., T.F. Reise, and S.B. Brummer, Efficiencies of Cycling Lithium on a Lithium Substrate in Propylene Carbonate. Journal of The Electrochemical Society, 1978. 125(2): p. 186-190.
17. Nanjundiah, C., et al., Electrochemical Stability of LiMF6 ( M = P , As , Sb ) in Tetrahydrofuran and Sulfolane. Journal of The Electrochemical Society, 1988. 135(12): p. 2914-2917.
18. Takata, K.i., et al., Cycling Characteristics of Secondary Li Electrode in LiBF4 / Mixed Ether Electrolytes. Journal of The Electrochemical Society, 1985. 132(1): p. 126-128.
19. Matsuda, Y., M. Morita, and T. Yamashita, Conductivity of the LiBF4 / Mixed Ether Electrolytes for Secondary Lithium Cells. Journal of The Electrochemical Society, 1984. 131(12): p. 2821-2827.
20. Matsuda, Y., M. Morita, and K.i. Takata, Solvent Mixing Effects on the Electrode Characteristics of Secondary Li / TiS2 Cells. Journal of The Electrochemical Society, 1984. 131(9): p. 1991-1995.
21. Prasanth, R., et al., Effect of poly(ethylene oxide) on ionic conductivity and electrochemical properties of poly(vinylidenefluoride) based polymer gel electrolytes prepared by electrospinning for lithium ion batteries. Journal of Power Sources, 2014. 245: p. 283-291.
22. Krause, L.J., et al., Corrosion of aluminum at high voltages in non-aqueous electrolytes containing perfluoroalkylsulfonyl imides; new lithium salts for lithium-ion cells. Journal of Power Sources, 1997. 68(2): p. 320-325.
23. Dahbi, M., et al., Comparative study of EC/DMC LiTFSI and LiPF6 electrolytes for electrochemical storage. Journal of Power Sources, 2011. 196(22): p. 9743-9750.
24. Ue, M. and S. Mori, Mobility and Ionic Association of Lithium Salts in a Propylene Carbonate‐Ethyl Methyl Carbonate Mixed Solvent. Journal of The Electrochemical Society, 1995. 142(8): p. 2577-2581.
25. Schmidt, M., et al., Lithium fluoroalkylphosphates: a new class of conducting salts for electrolytes for high energy lithium-ion batteries. Journal of Power Sources, 2001. 97-98: p. 557-560.
26. Walker, C.W., J.D. Cox, and M. Salomon, Conductivity and Electrochemical Stability of Electrolytes Containing Organic Solvent Mixtures with Lithium tris(Trifluoromethanesulfonyl)methide. Journal of The Electrochemical Society, 1996. 143(4): p. L80-L82.
27. Hossain, S., Handbook of Batteries, Second Edition, D. Linden, Editor. 1995, McGraw-Hill: New York.
28. Park, M., et al., A review of conduction phenomena in Li-ion batteries. Journal of Power Sources, 2010. 195(24): p. 7904-7929.
29. Peled, E. and S. Menkin, Review—SEI: Past, Present and Future. Journal of The Electrochemical Society, 2017. 164(7): p. A1703-A1719.
30. Lux, S.F., et al., The mechanism of HF formation in LiPF6 based organic carbonate electrolytes. Electrochemistry Communications, 2012. 14(1): p. 47-50.
31. Li, D., et al., Degradation Mechanisms of C6/LiFePO4 Batteries: Experimental Analyses of Calendar Aging. Electrochimica Acta, 2016. 190: p. 1124-1133.
32. Campion, C.L., W. Li, and B.L. Lucht, Thermal Decomposition of LiPF6-Based Electrolytes for Lithium-Ion Batteries. Journal of The Electrochemical Society, 2005. 152(12): p. A2327.
33. Wilken, S., et al., Initial stages of thermal decomposition of LiPF6-based lithium ion battery electrolytes by detailed Raman and NMR spectroscopy. RSC Advances, 2013. 3(37): p. 16359.
34. Tasaki, K., et al., Decomposition of LiPF[sub 6] and Stability of PF[sub 5] in Li-Ion Battery Electrolytes. Journal of The Electrochemical Society, 2003. 150(12): p. A1628.
35. Ganesh, P., P.R.C. Kent, and D.-e. Jiang, Solid–Electrolyte Interphase Formation and Electrolyte Reduction at Li-Ion Battery Graphite Anodes: Insights from First-Principles Molecular Dynamics. The Journal of Physical Chemistry C, 2012. 116(46): p. 24476-24481.
36. Camacho-Forero, L.E. and P.B. Balbuena, Elucidating electrolyte decomposition under electron-rich environments at the lithium-metal anode. Phys Chem Chem Phys, 2017. 19(45): p. 30861-30873.
37. Kresse, G. and J. Furthmüller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Computational Materials Science, 1996. 6(1): p. 15-50.
38. Baboul, A.G., et al., Gaussian-3 theory using density functional geometries and zero-point energies. The Journal of Chemical Physics, 1999. 110(16): p. 7650-7657.
39. Kresse, G. and J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Physical Review B, 1996. 54(16): p. 11169-11186.
40. Momma, K. and F. Izumi, VESTA: a three-dimensional visualization system for electronic and structural analysis. Journal of Applied Crystallography, 2008. 41(3): p. 653-658.
41. Gross, E.K.U. and W. Kohn, Time-Dependent Density-Functional Theory, in Advances in Quantum Chemistry, P.-O. Löwdin, Editor. 1990, Academic Press. p. 255-291.
42. Parr, R.G. Density Functional Theory of Atoms and Molecules. 1980. Dordrecht: Springer Netherlands.
43. Kohn, W., Nobel Lecture: Electronic structure of matter---wave functions and density functionals. Reviews of Modern Physics, 1999. 71(5): p. 1253-1266.
44. Hartree, D.R., The Wave Mechanics of an Atom with a Non-Coulomb Central Field. Part I. Theory and Methods. Mathematical Proceedings of the Cambridge Philosophical Society, 1928. 24(1): p. 89-110.
45. Fock, V., Näherungsmethode zur Lösung des quantenmechanischen Mehrkörperproblems. Zeitschrift für Physik, 1930. 61(1): p. 126-148.
46. Hohenberg, P. and W. Kohn, Inhomogeneous Electron Gas. Physical Review, 1964. 136(3B): p. B864-B871.
47. Kohn, W. and L.J. Sham, Self-Consistent Equations Including Exchange and Correlation Effects. Physical Review, 1965. 140(4A): p. A1133-A1138.
48. P. Perdew, J., K. Burke, and M. Ernzerhof, Generalized Gradient Approximation Made Simple. Vol. 77. 1996. 3865-3868.
49. Perdew, J.P., Density-functional approximation for the correlation energy of the inhomogeneous electron gas. Physical Review B, 1986. 33(12): p. 8822-8824.
50. Becke, A.D., Density-functional exchange-energy approximation with correct asymptotic behavior. Physical Review A, 1988. 38(6): p. 3098-3100.
51. Perdew, J.P., et al., Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. Physical Review B, 1992. 46(11): p. 6671-6687.
52. Perdew, J.P., M. Ernzerhof, and K. Burke, Rationale for mixing exact exchange with density functional approximations. The Journal of Chemical Physics, 1996. 105(22): p. 9982-9985.
53. Kim, K. and K.D. Jordan, Comparison of Density Functional and MP2 Calculations on the Water Monomer and Dimer. The Journal of Physical Chemistry, 1994. 98(40): p. 10089-10094.
54. Stephens, P.J., et al., Ab Initio Calculation of Vibrational Absorption and Circular Dichroism Spectra Using Density Functional Force Fields. The Journal of Physical Chemistry, 1994. 98(45): p. 11623-11627.
55. Boys, S.F. and A.C. Egerton, Electronic wave functions - I. A general method of calculation for the stationary states of any molecular system. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 1950. 200(1063): p. 542-554.
56. Binkley, J.S., J.A. Pople, and W.J. Hehre, Self-consistent molecular orbital methods. 21. Small split-valence basis sets for first-row elements. Journal of the American Chemical Society, 1980. 102(3): p. 939-947.
57. Gordon, M.S., et al., Self-consistent molecular-orbital methods. 22. Small split-valence basis sets for second-row elements. Journal of the American Chemical Society, 1982. 104(10): p. 2797-2803.
58. Krishnan, R., et al., Self‐consistent molecular orbital methods. XX. A basis set for correlated wave functions. The Journal of Chemical Physics, 1980. 72(1): p. 650-654.
59. Frisch, M.J., J.A. Pople, and J.S. Binkley, Self‐consistent molecular orbital methods 25. Supplementary functions for Gaussian basis sets. The Journal of Chemical Physics, 1984. 80(7): p. 3265-3269.
60. Clark, T., et al., Efficient diffuse function-augmented basis sets for anion calculations. III. The 3-21+G basis set for first-row elements, Li–F. Journal of Computational Chemistry, 1983. 4(3): p. 294-301.
61. Rahman, A., Correlations in the Motion of Atoms in Liquid Argon. Physical Review, 1964. 136(2A): p. A405-A411.
62. Born, M. and R. Oppenheimer, Zur Quantentheorie der Molekeln. Annalen der Physik, 1927. 389(20): p. 457-484.
63. Car, R. and M. Parrinello, Unified approach for molecular dynamics and density-functional theory. Phys Rev Lett, 1985. 55(22): p. 2471-2474.
64. Verlet, L., Computer "Experiments" on Classical Fluids. I. Thermodynamical Properties of Lennard-Jones Molecules. Physical Review, 1967. 159(1): p. 98-103.
65. Swope, W.C., et al., A computer simulation method for the calculation of equilibrium constants for the formation of physical clusters of molecules: Application to small water clusters. The Journal of Chemical Physics, 1982. 76(1): p. 637-649.
66. Hoover, W.G., Canonical dynamics: Equilibrium phase-space distributions. Physical Review A, 1985. 31(3): p. 1695-1697.
67. Nosé, S., A unified formulation of the constant temperature molecular dynamics methods. The Journal of Chemical Physics, 1984. 81(1): p. 511-519.
68. Nosé, S., A molecular dynamics method for simulations in the canonical ensemble. Molecular Physics, 1984. 52(2): p. 255-268.
69. Pulay, P., et al., Systematic ab initio gradient calculation of molecular geometries, force constants, and dipole moment derivatives. Journal of the American Chemical Society, 1979. 101(10): p. 2550-2560.
70. Fogarasi, G., et al., The calculation of ab initio molecular geometries: efficient optimization by natural internal coordinates and empirical correction by offset forces. Journal of the American Chemical Society, 1992. 114(21): p. 8191-8201.
71. Pulay, P. and G. Fogarasi, Geometry optimization in redundant internal coordinates. The Journal of Chemical Physics, 1992. 96(4): p. 2856-2860.
72. McQuarrie, D.A., Statistical mechanics. 1975, New York: Harper & Row.
73. Borodin, O. and G.D. Smith, Quantum Chemistry and Molecular Dynamics Simulation Study of Dimethyl Carbonate: Ethylene Carbonate Electrolytes Doped with LiPF6. The Journal of Physical Chemistry B, 2009. 113(6): p. 1763-1776.
74. Okamoto, Y., Ab Initio Calculations of Thermal Decomposition Mechanism of LiPF6-Based Electrolytes for Lithium-Ion Batteries. Journal of The Electrochemical Society, 2013. 160(2): p. A404-A409.
75. Chambouleyron, I. and D. Comedi, Amorphous Silicon and Germanium, in Encyclopedia of Materials: Science and Technology, K.H.J. Buschow, et al., Editors. 2001, Elsevier: Oxford. p. 289-298.
76. Rindt, C.C.M. and S.V. Gaastra-Nedea, 15 - Modeling thermochemical reactions in thermal energy storage systems, in Advances in Thermal Energy Storage Systems, L.F. Cabeza, Editor. 2015, Woodhead Publishing. p. 375-415.
77. Tang, W., E. Sanville, and G. Henkelman, A grid-based Bader analysis algorithm without lattice bias. Journal of Physics: Condensed Matter, 2009. 21(8): p. 084204.
78. Sanville, E., et al., Improved grid-based algorithm for Bader charge allocation. Journal of Computational Chemistry, 2007. 28(5): p. 899-908.
79. Henkelman, G., A. Arnaldsson, and H. Jónsson, A fast and robust algorithm for Bader decomposition of charge density. Computational Materials Science, 2006. 36(3): p. 354-360.
80. Yu, M. and D.R. Trinkle, Accurate and efficient algorithm for Bader charge integration. The Journal of Chemical Physics, 2011. 134(6): p. 064111.
81. Verma, P., P. Maire, and P. Novák, A review of the features and analyses of the solid electrolyte interphase in Li-ion batteries. Electrochimica Acta, 2010. 55(22): p. 6332-6341.
82. Teng, X., et al., In Situ Analysis of Gas Generation in Lithium-Ion Batteries with Different Carbonate-Based Electrolytes. ACS Applied Materials & Interfaces, 2015. 7(41): p. 22751-22755.
83. Augustsson, A., et al., Solid electrolyte interphase on graphite Li-ion battery anodes studied by soft X-ray spectroscopy. Physical Chemistry Chemical Physics, 2004. 6(16): p. 4185-4189.