簡易檢索 / 詳目顯示

研究生: 彭琪惠
Peng, Chi-Huei
論文名稱: 設計合成焦磷酸衍生物為化學探針用以研究天然抗菌物
Synthetic pyrophosphate-based molecules as chemical probes to search naturally occurring antibacterial agents
指導教授: 鄭偉杰
Cheng, Wei-Chieh
共同指導教授: 黃福永
Huang, Fu-Yung
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 90
中文關鍵詞: 肽聚醣化學探針親和層析法抗菌物
外文關鍵詞: peptidoglycan, chemical probe, affinity chromatography, antibacterial agents
相關次數: 點閱:100下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近幾年由於抗藥性細菌持續的威脅著人類的健康,醫療上急切需要科學家發展出新一代的抗生素。在現今社會中,萬古黴素以及乳酸鏈球菌素這些天然抗生素被證實擁有良好的抗菌活性並且以肽聚醣的片段為標靶。本篇論文,設計了一些肽聚醣的分子像是三胜肽 (tripeptide)以及glycopyrophosphates經由適當的條件連結在載體上形成化學探針,更進一步的利用對肽聚醣的片段有作用的已知抗生素來探討這些化學探針。
    利用萬古黴素以及乳酸鏈球菌素與肽聚醣片段的作用,當成實驗的範本用以證實如何有效的運用此探針以及實驗的流程,這些化學探針結合了分析的儀器之後更能夠成為一個好的策略,使得這項策略能用在探討新的肽聚醣的結合物並且縮減了傳統純化的過程。

    The accelerating appearance of drug-resistant bacteria results in a serious threat to human health. As a result, it is urgent for scientist to search for new effective antibiotics.
    Currently, some naturally occurring antibacterial agents, such as vancomycin and nisin typed molecules, have been demonstrated not only to show potent antibacterial activity, but also to target peptidoglycan (PG) fragments or peptidoglycan precursors.
    In this work, we designed several PG molecules such as the tripeptide and glycopyrophophates to immobilize on a solid-support through a proper linker and conjugation conditions. To approve our concept, these PG-immobilized resins were interacted with natural binders, including vancomycin and crude nisin, to investigate how to enrich or identify PG-binders from crude mixture. Our probes with the assistance of analytical equipment, such as imaging mass spectrometry (IMS) and/or high-performance liquid chromatography (HPLC), become a powerful tool, allowing us not only to explore new PG binders but also to simplify traditional purification procedures.

    摘要 I Abstract II Acknowledgement III Table of Content IV Index of Figures VII Index of Tables IX Index of Schemes X Abbreviations XI Chapetr 1 . Introduction 1 1.1 Introduction to antibiotic and the resistance 1 1.2 Current discovery and development for antibiotics 1 1.3 The biosynthesis of peptidoglycan 2 1.4 Binding affinity between antibiotics and PG intermediates 3 1.4.1 Glycopeptides 4 1.4.1.1 Vancomycin 4 1.4.1.2 Teicoplanin 6 1.4.1.3 Ramoplanin 6 1.4.2 Lantibiotics 7 1.5 Small molecule-based probe and affinity chromatography 9 1.6 Mass spectroscopy and Imaging-mass spectroscopy 11 1.7 Motivation 12 Chapetr 2 . Results and discussion 13 2.1 Strategy and design 13 2.1.1 Molecular design 14 2.1.1.1 Tripeptide (PG-based probe A) 14 2.1.1.2 Park nucleotide (PG-based probe B) 14 2.1.1.3 Lipid I-based analogue (PG-based probe C) 15 2.1.2 Immobilization of PG intermediates on sepharose 15 2.1.3 Synthesis of PG molecules 16 2.1.3.1 Preparation of tripeptide 16 2.1.3.2 Park nucleotide 17 2.1.3.3 Preparation of Lipid I-based analogue 18 2.1.4 Analysis of the loading of Park nucleotide on the resin 22 2.2 Model study for PG-based probes A and B 25 2.2.1 Vancomycin and PG-based probe A 25 2.2.2 Nisin and PG-based probe B 27 2.3 Application of probes toward real case studies 32 2.3.1 Enrichment of nisin from the fermentation of L. lactis subsp. lactis ATCC 11454 33 2.3.2 Enrichment of ramoplanin from the fermentation of the Actinoplanes sp. ATCC 33076 35 2.3.3 Marine bacteria 37 2.3.3.1 Streptomyces variabilis strain SH11 38 2.3.3.2 Streptomyces bacillaris strain A8 39 2.3.4 Co-cultured strains 42 2.4 Conclusion 43 Chapter 3. Experiment section 44 3.1 Part I: Biological section 44 3.1.1 Materials 44 3.1.2. Methods 45 3.2 Part II: Chemical section 51 3.2.1 General experimental procedure 51 3.2.2 Synthetic procedures and spectral data 52 References 63 Appendix 69

    1. Donadio, S.; Maffioli, S.; Monciardini, P.; Sosio, M.; Jabes, D., Antibiotic discovery in the twenty-first century: current trends and future perspectives. J. Antibiot. 2010, 63, 423-430.
    2. Hamburger, J. B.; Hoertz, A. J.; Lee, A.; Senturia, R. J.; McCafferty, D. G.; Loll, P. J., A crystal structure of a dimer of the antibiotic ramoplanin illustrates membrane positioning and a potential Lipid II docking interface. Proc. Natl. Acad. Sci. U.S.A. 2009, 106, 13759-13764.
    3. Martin, N. I.; Breukink, E., The expanding role of lipid II as a target for lantibiotics. Future Microbiol. 2007, 2, 513-525.
    4. Liu, H.; Ritter, T. K.; Sadamoto, R.; Sears, P. S.; Wu, M.; Wong, C.-H., Acceptor Specificity and Inhibition of the Bacterial Cell-Wall Glycosyltransferase MurG. ChemBioChem 2003, 4, 603-609.
    5. Christ, K.; Wiedemann, I.; Bakowsky, U.; Sahl, H.-G.; Bendas, G., The role of lipid II in membrane binding of and pore formation by nisin analyzed by two combined biosensor techniques. Biochim. Biophys. Acta. 2007, 1768, 694-704.
    6. Breukink, E.; de Kruijff, B., Lipid II as a target for antibiotics. Nat. Rev. Drug Discov. 2006, 5, 321-323.
    7. Vollmerhaus, P. J.; Breukink, E.; Heck, A. J. R., Getting Closer to the Real Bacterial Cell Wall Target: Biomolecular Interactions of Water-Soluble Lipid II with Glycopeptide Antibiotics. Chem. Eur. J. 2003, 9, 1556-1565.
    8. Healy, V. L.; Lessard, I. A. D.; Roper, D. I.; Knox, J. R.; Walsh, C. T., Vancomycin resistance in enterococci: reprogramming of the D-Ala–D-Ala ligases in bacterial peptidoglycan biosynthesis. Chem. Biol. 2000, 7, R109-R119.
    9. Walsh, C. T.; Fisher, S. L.; Park, I. S.; Prahalad, M.; Wu, Z., Bacterial resistance to vancomycin: five genes and one missing hydrogen bond tell the story. Chem. Biol.1996, 3, 21-28.
    10. Corti, A.; Cassani, G., Synthesis and characterization of D-Alanyl-D-Alanine-Agarose. Appl. Biochem. Biotechnol. 1985, 11, 101-109.
    11. Chen, Y.-Y.; He, W.-Y.; Wu, Y.; Niu, C.-Q.; Liu, G., Dynamic selection of novel vancomycin N-terminal derivatives by resin-bound reversed D-Ala-D-Ala. J. Comb. Chem. 2008, 10, 914-922.
    12. Boger, D. L., Vancomycin, teicoplanin, and ramoplanin: Synthetic and mechanistic studies. Med. Res. Rev. 2001, 21, 356-381.
    13. Svetitsky, S.; Leibovici, L.; Paul, M., Comparative efficacy and safety of vancomycin versus teicoplanin: systematic review and meta-analysis. Antimicrob. Agents Chemother. 2009, 53, 4069-4079.
    14. Hu, Y.; Helm, J. S.; Chen, L.; Ye, X.-Y.; Walker, S., Ramoplanin inhibits bacterial transglycosylases by binding as a dimer to lipid II. J. Am. Chem. Soc. 2003, 125, 8736-8737.
    15. Cudic, P.; Kranz, J. K.; Behenna, D. C.; Kruger, R. G.; Tadesse, H.; Wand, A. J.; Veklich, Y. I.; Weisel, J. W.; McCafferty, D. G., Complexation of peptidoglycan intermediates by the lipoglycodepsipeptide antibiotic ramoplanin: Minimal structural requirements for intermolecular complexation and fibril formation. Proc. Natl. Acad. Sci. 2002, 99, 7384-7389.
    16. Willey, J. M.; van der Donk, W. A., Lantibiotics: Peptides of diverse structure and function. Annu. Rev. Microbio. 2007, 61, 477-501.
    17. Hsu, S.-T. D.; Breukink, E.; Tischenko, E.; Lutters, M. A. G.; de Kruijff, B.; Kaptein, R.; Bonvin, A. M. J. J.; van Nuland, N. A. J., The nisin-lipid II complex reveals a pyrophosphate cage that provides a blueprint for novel antibiotics. Nat. Struct. Mol. Biol. 2004, 11, 963-967.
    18. Mantovani, H. C.; Hu, H.; Worobo, R. W.; Russell, J. B., Bovicin HC5, a bacteriocin from Streptococcus bovis HC5. Microbiology 2002, 148, 3347-3352.
    19. Paiva, A. D.; Breukink, E.; Mantovani, H. C., Role of Lipid II and membrane thickness in the mechanism of action of the lantibiotic bovicin HC5. Antimicrob. Agents Chemother. 2011, 55, 5284-5293.
    20. Higg, R. E.; Zhen, E.; Hale, J. E.; Saxena, C., Small-molecule affinity chromatography coupled mass spectrometry for drug target deconvolution. Expert. Opin. Biol. Ther. 2009, 4, 701-714.
    21. Stembera, K.; Buchynskyy, A.; Vogel, S.; Knoll, D.; Osman, A. A.; Ayala, J. A.; Welzel, P., Moenomycin-mediated affinity purification of penicillin-binding protein 1b. ChemBioChem 2002, 3, 332-340.
    22. Yu-Liang, Y.; Yuquan, X.; Paul, S.; Pieter, C. D., Translating metabolic exchange with imaging mass spectrometry. Nat. Chem. Biol. 2009, 5, 885-887.
    23. Singh, M. P.; Petersen, P. J.; Weiss, W. J.; Janso, J. E.; Luckman, S. W.; Lenoy, E. B.; Bradford, P. A.; Testa, R. T.; Greenstein, M., Mannopeptimycins, New cyclic glycopeptide antibiotics produced by streptomyces hygroscopicus LL-AC98: antibacterial and mechanistic activities. Antimicrob. Agents Chemother. 2003, 47, 62-69.
    24. Seng, P.; Rolain, J.-M.; Fournier, P. E.; La Scola, B.; Drancourt, M.; Raoult, D., MALDI-TOF-mass spectrometry applications in clinical microbiology. Future Microbiol. 2010, 5, 1733-1754.
    25. Park, J. T., Uridine-5'-pyrophosphate Derivatives: I. Isolation From Staphylococcus aureus. J. Biol. Chem. 1952, 194, 877-884.
    26. Chen, K.-T.; Kuan, Y.-C.; Fu, W.-C.; Liang, P.-H.; Cheng, T.-J. R.; Wong, C.-H.; Cheng, W.-C., Rapid preparation of mycobacterium N-Glycolyl Lipid I and Lipid II derivatives: A biocatalytic approach. Chem. Eur. J. 2013, 19, 834-838.
    27. Liu, C.-Y.; Guo, C.-W.; Chang, Y.-F.; Wang, J.-T.; Shih, H.-W.; Hsu, Y.-F.; Chen, C.-W.; Chen, S.-K.; Wang, Y.-C.; Cheng, T.-J. R.; Ma, C.; Wong, C.-H.; Fang, J.-M.; Cheng, W.-C., Synthesis and evaluation of a new fluorescent transglycosylase substrate: Lipid II-based molecule possessing a dansyl-C20 polyprenyl moiety. Org. Lett. 2010, 12, 1608-1611.
    28. (a) Molinari, H.; Pastore, A.; Lian, L. Y.; Hawkes, G. E.; Sales, K., Structure of vancomycin and a vancomycin/D-Ala-D-Ala complex in solution. Biochemistry 1990, 29, 2271-2277; (b) Sheldrick, G. M.; Jones, P. G.; Kennard, O.; Williams, D. H.; Smith, G. A., Structure of vancomycin and its complex with acetyl-D-alanyl-D-alanine. Nature 1978, 271, 223-225.
    29. Mota-Meira, M.; Lapointe, G.; Lacroix, C.; Lavoie, M. C., MICs of mutacin B-Ny266, nisin A, vancomycin, and oxacillin against bacterial pathogens. Antimicrobl. Agents Chemother. 2000, 44, 24-29.
    30. Gross, E.; Morell, J. L., Presence of dehydroalanine in the antibiotic nisin and its relation to activity. J. Amer. Chem. Soc. 1967, 89, 2791-2792.
    31. Rollema, H. S.; Metzger, J. W.; Both, P.; Kuipers, O. P.; Siezen, R. J., Structure and biological activity of chemically modified nisin a species. Eur. J. Biochem. 1996, 241, 716-722.
    32. Lavanant, H.; Derrick, P. J.; Heck, A. J. R.; Mellon, F. A., Analysis of nisin A and some of its variants using fourier transform ion cyclotron resonance mass spectrometry. Anal. Biochem. 1998, 255, 74-89.
    33. Yang, R.; Johnson, M. C.; Ray, B., Novel method to extract large amounts of bacteriocins from lactic acid bacteria. Appl. Environ. Microbiol. 1992, 58, 3355-3359.
    34. Likozar, B.; Senica, D.; Pavko, A., Comparison of adsorption equilibrium and kinetic models for a case study of pharmaceutical active ingredient adsorption from fermentation broths: parameter determination, simulation, sensitivity analysis and optimization. Braz. J. Chem. Eng. 2012, 29, 635-652.
    35. Walker, S.; Chen, L.; Hu, Y.; Rew, Y.; Shin, D.; Boger, D. L., Chemistry and biology of ramoplanin: A lipoglycodepsipeptide with potent antibiotic activity. Chem. Rev. 2005, 105, 449-476.
    36. Giancarlo L,; Angelo B,; Piero A., Method for selectively increasing the ratio of single major components of antibiotic A/16686 complex. U.S. Patent 5,925,550, Jul. 20, 1999.
    37. Yun B. S.; Hidaka T.; Furihata K.; Seto H., Microbial metabolites with tipA promoter
    inducing activity. II. Geninthiocin, a novel thiopeptide produced by Streptomyces sp. DD84. J. Antibiot.1994, 47, 969-975.
    38. Sajid, I.; Shaaban, K.A.; Frauendorf, H.; Hasnain, S.; Laatsch, H., Val-Geninthiocin:
    Structure elucidation and MSn fragmentation of thiopeptide antibiotics produced by Streptomyces sp. RSF18. Naturforsch., B: Chem. Sci. 2008, 10, 1223-1230.

    無法下載圖示 校內:2018-09-12公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE