| 研究生: |
孫偉倫 Sun, Wei-Lun |
|---|---|
| 論文名稱: |
含有小分子的拉曼標記之組裝及分析 Assembly and Characterization of Raman Tags with small molecules |
| 指導教授: |
陳宣燁
Chen, Shiuan-Yeh |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Photonics |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 中文 |
| 論文頁數: | 58 |
| 中文關鍵詞: | 表面增強拉曼散射 、拉曼標記 、二氧化矽殼 、核心-衛星組裝 |
| 外文關鍵詞: | SERS, Raman tag, silica shell, core-satellite assemblies |
| 相關次數: | 點閱:74 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來,金屬奈米粒子的應用已有相當廣泛的研究,如表面增強拉曼散射(surface-enhanced Raman scattering)、表面增強螢光(surface enhanced fluorescence)局域性表面電漿共振(Localized surface plasmon resonance),通常會被應用在分子訊號增強、分子感測與生醫成像,其中有很多研究利用金屬表面的不連續處或粒子間隙中的高電場增強來提升金屬表面分子的訊號強度[4][5][6][7][8][11]。而拉曼標記則是其中一種,其優點在於分子拉曼訊號的高穩定度與高辨識性,分子的訊號則是利用結構內的高電場增強。本論文中利用靜電吸附形成的核心-衛星奈米金屬架構,將BDT、DMcT或Cy5作為拉曼分子。合成後的核心-衛星奈米金屬架構將會包覆二氧化矽殼,一方面避免結構遭受環境破壞,另一方面也賦予其修飾上抗體的可行性。
在本論文中除了提供一個可行的製程製作可進行定量分析的金屬叢集架構,另一方面也透過二氧化矽殼製程的優化與改良複合核心-衛星組裝粒子的方法進行分散性、衛星吸附量的優化,整個製程的製作時間可在一天之內完成。具有高分散性的粒子較容易進行定量分析量測且有利於後續的抗體修飾,衛星粒子吸附量的提升則會直接影響拉曼訊號的強度。
最後將會比較相同的核心-衛星奈米金屬架構下含BDT及Cy5的拉曼標記與含Cy5的PS粒子的亮度比較,了解拉曼訊號相較於螢光分子訊號的亮度之差距以及應用上的可行性。
In recent years, nano-metal materials have been extensively researched, including surface-enhanced Raman scattering, surface enhanced fluorescence and Localized surface plasmon resonance. They are usually applied in signal enhancement, molecular detection and biomedical image. Many kinds of research take advantage of discontinuous surface or nano-gap on metal to enhance the scattering signal. Raman tag is one of those applications to solve the problem that the intensity of the Raman signal is too weak to apply. The benefits of Raman tag are high identification, sensitivity and stability.
In this report, we embed Raman reporter in the core-satellite gold nanostructure that has been developed and optimized the process of silica coating and the adsorbed number of satellite particles. All the production could be finished in one day. In optical measurement, we could understand an average intensity at characteristic peaks in the Raman spectra for Raman tag, and the comparison between Fluorescent molecules and Raman tag embedded by Cy5 and 1,4-Benzenedithiol (BDT).
[1] Wang, Yunqing, Bing Yan, and Lingxin Chen. "SERS tags: novel optical nanoprobes for bioanalysis." Chemical reviews 113.3 (2012): 1391-1428.
[2] A. Campion, P. Kambhampati, "Surface-enhanced Raman scattering" Chem. Soc. Rev. 27, 241 (1998).
[3] Aioub, Mena, and Mostafa A. El-Sayed. "A real-time surface enhanced raman spectroscopy study of plasmonic photothermal cell death using targeted gold nanoparticles." Journal of the American Chemical Society 138.4 (2016): 1258-1264.
[4] Introductory Raman Spectroscopy Academic Press, Amsterdam, Second Edition, 2003
[5] 林天心, “以穩定的奈米粒子叢集為基礎的拉曼標記”, 碩士論文, 成功大學光電科學與工程學研究所,2017
[6] Gellner, Magdalena, et al. "3D self‐assembled plasmonic superstructures of gold nanospheres: Synthesis and characterization at the single‐particle level." Small 7.24 (2011): 3445-3451.
[7] S.-Y. Chen; A. A. Lazarides,2009,Quantitative Amplification of Cy5 SERS in ‘Warm Spots’ Created by Plasmonic Coupling in Nanoparticle Assemblies of Controlled Structure,Journal of Physical Chemistry C;,113,28,pp12167-12175 (SCI)
[8] 黃理敬,”修飾拉曼標記表面以用於腦瘤細胞的標定”, 碩士論文, 成功大學光電科學與工程學研究所,2017
[9] Yoon, Jun Hee, Jonghui Lim, and Sangwoon Yoon. "Controlled assembly and plasmonic properties of asymmetric core–satellite nanoassemblies." ACS nano 6.8 (2012): 7199-7208.
[10] Zhao, Xueli, et al. "Up-conversion fluorescence “off-on” switch based on heterogeneous core-satellite assembly for thrombin detection." Biosensors and Bioelectronics 70 (2015): 372-375.
[11] Lim, Dong-Kwon, et al. "Highly uniform and reproducible surface-enhanced Raman scattering from DNA-tailorable nanoparticles with 1-nm interior gap." Nature nanotechnology 6.7 (2011): 452.
[12] Lee, Jung-Hoon, et al. "Tuning and maximizing the single-molecule surface-enhanced Raman scattering from DNA-tethered nanodumbbells." ACS nano 6.11 (2012): 9574-9584.
[13] Embedding Raman Tags between Au Nanostar@Nanoshell for Multiplex Immunosensing
[14] Indrasekara, A. Swarnapali DS, Roney Thomas, and Laura Fabris. "Plasmonic properties of regiospecific core–satellite assemblies of gold nanostars and nanospheres." Physical Chemistry Chemical Physics 17.33 (2015): 21133-21142.
[15] 孫逸民,劉興鑑,陳玉舜,趙敏勳,謝明學 儀器分析,全威圖書,2006
[16] DLS操作手冊 NanoPlus_Operators_Manual_10-01-2012
[17] 陳俊皓, “彈性與非彈性散射光譜系統的整合”, 碩士論文, 成功大學光電科學與工程學研究所,2015
[18] Campion, Alan, and Patanjali Kambhampati. "Surface-enhanced Raman scattering." Chemical society reviews 27.4 (1998): 241-250.
[19] H. Raether. Surface plasmons on smooth and rough surfaces and on gratings. Springer Tracts in Modern Physics, Vol. 111, (New York, Springer-Verlag, 1988).
[20] Link, Stephan, and Mostafa A. El-Sayed. "Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles." The Journal of Physical Chemistry B 103.21 (1999): 4212-4217.
[21] 吳民耀、劉威志,表面電漿子理論與模擬,物理雙月刊廿八卷二期(2006)
[22] Stöber, Werner, Arthur Fink, and Ernst Bohn. "Controlled growth of monodisperse silica spheres in the micron size range." Journal of colloid and interface science 26.1 (1968): 62-69.
[23] Schmidt, H., Horst Scholze, and Alfred Kaiser. "Principles of hydrolysis and condensation reaction of alkoxysilanes." Journal of Non-Crystalline Solids 63.1-2 (1984): 1-11.
[24] Dislich, Helmut. "Sol-gel: science, processes and products." Journal of non-crystalline solids 80.1-3 (1986): 115-121.
[25] Kobayashi, Yoshio, et al. "Control of shell thickness in silica-coating of Au nanoparticles and their X-ray imaging properties." Journal of colloid and interface science 358.2 (2011): 329-333.
[26] Hunter, Robert J. Zeta potential in colloid science: principles and applications. Vol. 2. Academic press, 2013.
[27] Kalimuthu, Palraj, and S. Abraham John. "Studies on ligand exchange reaction of functionalized mercaptothiadiazole compounds onto citrate capped gold nanoparticles." Materials chemistry and physics 122.2-3 (2010): 380-385.
[28] Park, Jong-Won, and Jennifer S. Shumaker-Parry. "Strong resistance of citrate anions on metal nanoparticles to desorption under thiol functionalization." ACS nano 9.2 (2015): 1665-1682.
[29] Lin, Wayne, et al. "Control of protein orientation on gold nanoparticles." The Journal of Physical Chemistry C 119.36 (2015): 21035-21043.
[30] George, Socrates. "Infrared and Raman characteristic group frequencies: tables and charts." Wiley, Chichester (2001).
[31] Chang, Yung-Ching, et al. "Polyelectrolyte induced controlled assemblies for the backbone of robust and brilliant Raman tags." Optics express 25.20 (2017): 24767-24779.
[32] Akbulut, Ozge, et al. "Separation of nanoparticles in aqueous multiphase systems through centrifugation." Nano letters 12.8 (2012): 4060-4064.
[33] Pazos-Perez, Nicolas, et al. "Modular assembly of plasmonic core–satellite structures as highly brilliant SERS-encoded nanoparticles." Nanoscale Advances 1.1 (2019): 122-131.
[34] Hu, Chongya, et al. "Highly narrow nanogap-containing Au@ Au core–shell SERS nanoparticles: Size-dependent raman enhancement and applications in cancer cell imaging." Nanoscale 8.4 (2016): 2090-2096.
[35] Zheng, Yuanhui, et al. "Asymmetric gold nanodimer arrays: electrostatic self-assembly and SERS activity." Journal of Materials Chemistry A 3.1 (2015): 240-249.
[36] Prasad, Janak, et al. "Plasmonic core–satellite assemblies as highly sensitive refractive index sensors." The Journal of Physical Chemistry C 119.10 (2015): 5577-5582.
[37] Joo, Sang Woo, Sang Woo Han, and Kwan Kim. "Adsorption of 1, 4-benzenedithiol on gold and silver surfaces: surface-enhanced Raman scattering study." Journal of colloid and interface science 240.2 (2001): 391-399.
[38] 張永慶, “利用具有光熱效應的拉曼標記選擇性地消除神經膠質母細胞瘤細胞”, 碩士論文, 成功大學光電科學與工程學研究所,2019
[39] Pope, John M., et al. "Spectroscopic identification of 2, 5-dimercapto-1, 3, 4-thiadiazole and its lithium salt and dimer forms." Journal of power sources 68.2 (1997): 739-742.