簡易檢索 / 詳目顯示

研究生: 陳思元
Chan, Si-Yuan
論文名稱: 電場調控氧化鋅迴廊耳語模式微米柱共振腔之光致雷射放光行為
Electric field modulation of optically pumped whispering gallery mode lasing behavior from zinc oxide microrod
指導教授: 徐旭政
Hsu, Hsu-Cheng
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Photonics
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 70
中文關鍵詞: 氧化鋅微米柱迴廊耳語模態共振腔載子的再分配
外文關鍵詞: Zinc Oxide, whispering-gallery mode, carrier re-distribution
相關次數: 點閱:156下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文探討一全新策略,透過外加電場調控氧化鋅六角柱的迴廊耳語模態雷射的放光表現。
    施加外加電場的作用會影響電子電洞對的庫倫作用力,從而影響半導體的光致放光效率。當外加電場足以克服其庫侖作用力時,電子與電洞會分離。本實驗是透過調控分離的載子分佈,改變氧化鋅柱的光致雷射放光表現。當施加的外加偏壓還未克服庫倫作用力時(如5 V),氧化鋅的雷射閾值在相對不加偏壓時增加了至少3倍。當在施加的偏壓已克服庫倫作用力時(如17 V),使分離的高能載子累積在迴廊耳語共振的路徑上,最後可減少其雷射閾值至少3倍。
    透過這種方式,可以有效地調控氧化鋅迴廊耳語共振腔的雷射放光表現,並有效運用在光電設備上,如超低紫外光雷射閾值、光感測器等。

    In this work, we report a new strategy to modulate the intensity of the whispering-gallery-mode (WGM) lasing behavior of ZnO micro-rod (MR) via external electric field. The lasing threshold was reduced more than 3.5-fold when an electric field of 17 V was applied. However, the lasing threshold was nevertheless increased at least 3-fold if a 5V external electric field was applied. Our approach results from the regulation of carrier distribution and their behavior via a specific amount of external electric field. When applying a relatively small electric field, the photo-generated electron-hole pairs experienced a force that tried to separate them, diminishing the probability of their recombination. When the applied external electric field was increased, photo-excited electron-hole pairs might dissociate and accumulate near the ZnO surface. As a result, the electron-hole recombination rate near the surface of ZnO increase, which means that the optical gain near the surface region where whispering-gallery mode circulates has been increased when the applied electric field was large enough.
    This strategy can be applied for the future design of energy efficient opto-devices especially in the construction of UV laser and WGM sensing technology.

    摘要 II Abstract III 誌謝 IV Contents V List of Tables VII List of Figures VIII 1 Introduction 1 1-1 Preface 1 1-2 Motivation 9 2 Background Theories 10 2-1 Characteristics of Zinc Oxide 10 2-2 The Optical properties of Zinc Oxide 13 2-2-1 Ultraviolet Emission 13 2-2-2 Green Emission 15 2-3 Microcavities 17 2-3-1 Hexagonal Whispering-Gallery Modes 17 2-4 The contact between metal and semiconductor 20 2-4-1 Schottky barrier contact 21 2-4-2 Ohmic contact 22 2-4-3 Contact between ITO and n-ZnO 23 2-5 Ideal MIS capacitor69 24 2-6 Photo-excited current72 25 3 Experiment Process 27 3-1 Experimental Procedure 27 3-2 Chemical and Consumable 28 3-3 The Growth System of ZnO MRs 29 3-3-1 Chemical Vapor Deposition System 29 3-3-2 Cleaning procedure for Substrates 31 3-3-3 The Growth of ZnO microrods 32 3-3-4 The Transfer of ZnO MR 33 3-4 Samples Preparation 34 3-4-1 Samples for photoluminescence measurements 34 3-4-2 Samples for electric field induced PL measurement 35 4 Measurement Instrument 36 4-1 Field emission scanning electron microscopy 36 4-2 Photoluminescence system 37 4-2-1 Laser excitation source 38 4-2-2 Imaging spectrometer 38 4-3 Electric Field-modulated PL system 40 4-4 Semiconductor Characterization System 41 5 Results and Discussions 42 5-1 Material characterizations 42 5-1-1 Structure characterization of ZnO MRs 42 5-1-2 Structure of C6H7NO2 43 5-2 Optical properties 44 5-2-1 Continuous-wave PL Analysis 44 5-2-2 Pulse laser PL Analysis 45 5-3 Electric field-modulated optical and electrical performances 48 5-3-1 I-V Characteristic of MSM structured device 48 5-3-2 Electric field-modulated lasing behavior of MSM structured device 51 5-3-3 Electric field-modulated lasing behavior of MISIM structured device 53 6 Conclusion 63 7 Prospective Aspects 64 8 Reference 66

    1 G. Y. Zhu, J. T. Li, Z. S. Tian, J. Dai, Y. Y. Wang, P. L. Li, and C. X. Xu, Applied Physics Letters 106 (2) (2015).
    2 W. C. Lai, J. T. Chen, and Y. Y. Yang, Optics Express 21 (8), 9643 (2013).
    3 M. Ding, D. Zhao, B. Yao, B. Zhao, and X. Xu, Chemical Physics Letters 577, 88 (2013).
    4 J. Dai, C. X. Xu, and X. W. Sun, Advanced Materials 23 (35), 4115 (2011).
    5 R. Liu, X. W. Fu, J. Meng, Y Q. Bie, D. P. Yu, and Z. M Liao, Nanoscale 5 (12), 5294 (2013).
    6 A. E. Rakhshani, Journal of Applied Physics 108 (9) (2010).
    7 I. S. Jeong, J. H. Kim, and S. Im, Applied Physics Letters 83 (14), 2946 (2003).
    8 R. Dong, C. Bi, Q. Dong, F. Guo, Y. Yuan, Y. Fang, Z. Xiao, and Jinsong Huang, Advanced Optical Materials 2 (6), 549 (2014).
    9 P. Zhu, Z. Y. Weng, X. Li, X. M. Liu, S. L. Wu, K. W. K. Yeung, X. B. Wang, Z. D. Cui, X. J. Yang, and P. K. Chu, Advanced Materials Interfaces 3 (1) (2016).
    10 D. Y. Son, K. H. Bae, H. S. Kim, and N. G. Park, Journal of Physical Chemistry C 119 (19), 10321 (2015).
    11 D. Wang, F. Wang, Y. Wang, Y. Fan, B. Zhao, and D. Zhao, The Journal of Physical Chemistry C 119 (5), 2798 (2015).
    12 C. Zhang, J. Zhang, W. Liu, H. Xu, S. Hou, C. Wang, L. Yang, Z. Wang, X. Wang, and Y. Liu, ACS Applied Materials & Interfaces 8 (46), 31485 (2016).
    13 U. Ozgur, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Dogan, V. Avrutin, S. J. Cho, and H. Morkoc, Journal of Applied Physics 98 (4) (2005).
    14 L. Guo, Y. L. Ji, H. B. Xu, P. Simon, and Z. Y. Wu, Journal of the American Chemical Society 124 (50), 14864 (2002).
    15 W. Maryam, N. Fazrin, M. R. Hashim, H. C. Hsu, and M. M. Halim, Photonics and Nanostructures-Fundamentals and Applications 26, 52 (2017).
    16 Z. G. Li, M. M. Jiang, Y. Z. Sun, Z. Z. Zhang, B. H. Li, H. F. Zhao, C. X. Shan, and D. Z. Shen, Nanoscale 10 (39), 18774 (2018).
    17 C. X. Xu, F. F. Qin, Q. X. Zhu, J. F. Lu, Y. Y. Wang, J. T. Li, Y. Lin, Q. N. Cui, Z. L. Shi, and A. G. Manohari, Nano Research 11 (6), 3050 (2018).
    18 C. G. Garrett, W. Kaiser, and W. L. Bond, Physical Review 124 (6), 1807 (1961).
    19 R. E. Benner, P. W. Barber, J. F. Owen, and R. K. Chang, Physical Review Letters 44 (7), 475 (1980).
    20 F. F. Qin, C. X. Xu, D. Y. Lei, S. Q. Li, J. Liu, Q. X. Zhu, Q. N. Cui, D. T. You, A. G. Manohari, Z. Zhu, and F. Chen, Acs Photonics 5 (6), 2313 (2018).
    21 G. Y. Zhu, C. X. Xu, L. S. Cai, J. T. Li, Z. L. Shi, Y. Lin, G. F. Chen, T. Ding, Z. S. Tian, and J. Dai, Acs Applied Materials & Interfaces 4 (11), 6195 (2012).
    22 X. Yang, C. X. Shan, M. M. Jiang, J. M Qin, G. C. Hu, S. P. Wang, H. A. Ma, X. P. Jia, and D. Z. Shen, Journal of Materials Chemistry C 3 (20), 5292 (2015).
    23 A. Tsukazaki, A. Ohtomo, T. Onuma, M. Ohtani, T. Makino, M. Sumiya, K. Ohtani, S. F. Chichibu, S. Fuke, Y. Segawa, H. Ohno, H. Koinuma, and M. Kawasaki, Nature Materials 4 (1), 42 (2005).
    24 M. Deo, D. Shinde, A. Yengantiwar, J. Jog, B. Hannoyer, X. Sauvage, M. More, and S. Ogale, Journal of Materials Chemistry 22 (33), 17055 (2012).
    25 Y. P. Hsieh, H. Y. Chen, M. Z. Lin, S. C. Shiu, M. Hofmann, M. Y. Chern, X. Jia, Y. J. Yang, H. J. Chang, H. M. Huang, S. C. Tseng, L. C. Chen, K. H. Chen, C. F. Lin, C. T. Liang, and Y. F. Chen, Nano Letters 9 (5), 1839 (2009).
    26 X. Fang, Z. Wei, Y. Yang, R. Chen, Y. Li, J. Tang, D. Fang, JH. Jia, D. Wang, Jie Fan, X. Ma, B. Yao, and X. Wang, ACS Applied Materials & Interfaces 8 (3), 1661 (2016).
    27 O. Lupan, T. Pauporte, and B. Viana, Advanced Materials 22 (30), 3298 (2010).
    28 C. Zhang, F. F. Zhu, H. Y. Xu, W. Z. Liu, L. Yang, Z. Q. Wang, J. G. Ma, Z. H. Kang, and Y. C. Liu, Nanoscale 9 (38), 14592 (2017).
    29 T. Michalsky, M. Wille, M. Grundmann, and R. Schmidt-Grund, Journal of Physics D-Applied Physics 51 (42) (2018).
    30 D. You, C. Xu, F. Qin, Z. Zhu, A. Gowri Manohari, W. Xu, J. Zhao, and W. Liu, Science Bulletin 63 (1), 38 (2018).
    31 Y. M. Chang, M. L. Lin, T. Y. Lai, C. H. Chen, H. Y. Lee, C. M. Lin, Y. C. S. Wu, Y. F. Lin, and J. Y. Juang, Acs Applied Materials & Interfaces 9 (13), 11985 (2017).
    32 S. Chen, X. Pan, H. He, W. Chen, W. Dai, C. Chen, H. Zhang, P. Ding, J. Huang, B. Lu, J. Lu, and Z. Ye, Optics Letters 40 (12), 2782 (2015).
    33 C. W. Cheng, E. J. Sie, B. Liu, C. H. A. Huan, T. C. Sum, H. D. Sun, and H. J. Fan, Applied Physics Letters 96 (7), 071107 (2010).
    34 T. C. Chiang, C. Y. Chiu, T. F. Dai, Y. J. Hung, and H. C. Hsu, OPTICAL MATERIALS EXPRESS 7 (2), 313 (2017).
    35 S. G. Zhang, X. W. Zhang, Z. G. Yin, J. X. Wang, F. T. Si, H. L. Gao, J. J. Dong, and X. Liu, Journal of Applied Physics 112 (1), 013112 (2012).
    36 L. Yang, Y. Wang, H. Y. Xu, W. Z. Liu, C. Zhang, C. L. Wang, Z. Q. Wang, J. G. Ma, and Y. C. Liu, Acs Applied Materials & Interfaces 10 (18), 15812 (2018).
    37 F. F. Qin, C. X. Xu, Q. X. Zhu, J. F. Lu, D. T. You, W. Xu, Z. Zhu, A. G. Manohari, and F. Chen, Nanoscale 10 (2), 623 (2018).
    38 D. F. Pan, G. F. Bi, G. Y. Chen, H. Zhang, J. M. Liu, G. H. Wang, and J. G. Wan, Sci Rep 6 (2016).
    39 Y. Liu, M. M. Jiang, G. H. He, S. F. Li, Z. Z. Zhang, B. H. Li, H. F. Zhao, C. X. Shan, and D. Z. Shen, Acs Applied Materials & Interfaces 9 (46), 40743 (2017).
    40 F. Xue, L. M. Zhang, X. L. Feng, G. F. Hu, F. R. Fan, X. N. Wen, L. Zheng, and Z. L. Wang, Nano Research 8 (7), 2390 (2015).
    41 X. Y. Liu, C. X. Shan, H. Zhu, B. H. Li, M. M. Jiang, S. F. Yu, and D. Z. Shen, Sci Rep 5, 9 (2015).
    42 X. M. Wang, F. Z. Sun, Y. Q. Duan, Z. P. Yin, W. Luo, Y. A. Huang, and J. K. Chen, Journal of Materials Chemistry C 3 (43), 11397 (2015).
    43 J. F. Lu, C. X. Xu, F. T. Li, Z. Yang, Y. Y. Peng, X. Y. Li, M. L. Que, C. F. Pan, and Z. L. Wang, Acs Nano 12 (12), 11899 (2018).
    44 H. Fujiwara, H. Kaiju, J. Nishii, and K. Sasaki, Applied Physics Letters 113 (13) (2018).
    45 K. Awasthi, C. Y. Wang, A. Fathi, S. Narra, E. W. G. Diau, and N. Ohta, Journal of Physical Chemistry C 121 (41), 22700 (2017).
    46 F. Yuan, Z. X. Wu, H. Dong, B. Xia, J. Xi, S. Y. Ning, L. Ma, and X. Hou, Applied Physics Letters 107 (26) (2015).
    47 M. H. Huang, S. Mao, H. Feick, H. Q. Yan, Y. Y. Wu, H. Kind, E. Weber, R. Russo, and P. D. Yang, Science 292 (5523), 1897 (2001).
    48 M. A. Zimmler, J. Bao, F. Capasso, S. Muller, and C. Ronning, Applied Physics Letters 93 (5) (2008).
    49 X. W. Sun, S. F. Yu, C. X. Xu, C. Yuen, B. J. Chen, and S. Li, Japanese Journal of Applied Physics Part 2-Letters 42 (10B), L1229 (2003).
    50 D. J. Gargas, M. C. Moore, A. Ni, S. W. Chang, Z. Y. Zhang, S. L. Chuang, and P. D. Yang, Acs Nano 4 (6), 3270 (2010).
    51 J. T. Li, Y. Lin, J. F. Lu, C. X. Xu, Y. Y. Wang, Z. L. Shi, and J. Dai, Acs Nano 9 (7), 6794 (2015).
    52 S. C. Yang and R. M. German, Journal of the American Ceramic Society 74 (12), 3085 (1991).
    53 A. S. Kamble, B. B. Sinha, K. Chung, M. G. Gil, V. Burungale, C. J. Park, J. H. Kim, and P. S. Patil, Electrochimica Acta 149, 386 (2014).
    54 G. I. Finch and H. Wilman, Journal of the Chemical Society, 751 (1934).
    55 L. Liao, H. B. Lu, M. Shuai, J. C. Li, Y. L. Liu, C. Liu, Z. X. Shen, and T. Yu, Nanotechnology 19 (17) (2008).
    56 T. F. Dai, W. C. Hsu, and H. C. Hsu, Optics Express 22 (22), 27169 (2014).
    57 B. K. Meyer, H. Alves, D. M. Hofmann, W. Kriegseis, D. Forster, F. Bertram, J. Christen, A. Hoffmann, M. Strassburg, M. Dworzak, U. Haboeck, and A. V. Rodina, Physica Status Solidi B-Basic Solid State Physics 241 (2), 231 (2004).
    58 A. B. Djurišić and Y. H. Leung, Small 2 (8-9), 944 (2006).
    59 M. Liu, A. H. Kitai, and P. Mascher, Journal of Luminescence 54 (1), 35 (1992).
    60 B. Lin, Z. Fu, and Y. Jia, Applied Physics Letters 79 (7), 943 (2001).
    61 Rayleigh, Philosophical Magazine 20 (115-20), 1001 (1910).
    62 Y. Minowa, Y. Oguni, and M. Ashida, Optics Express 25 (9), 10449 (2017).
    63 Y. R. Nowicki-Bringuier, J. Claudon, C. Bockler, S. Reitzenstein, M. Kamp, A. Morand, A. Forchel, and J. M. Gerard, Optics Express 15 (25), 17291 (2007).
    64 Z. H. Gao, C. Wei, Y. L. Yan, W. Zhang, H. Y. Dong, J. Y. Zhao, J. Yi, C. H. Zhang, Y. J. Li, and Y. S. Zhao, Advanced Materials 29 (30) (2017).
    65 G. M. Zhao, S. K. Ozdemir, T. Wang, L. H. Xu, E. King, G. L. Long, and L. Yang, Science Bulletin 62 (12), 875 (2017).
    66 P. B. Taunk, R. Das, D.P. Bisen, R. K. Tamrakar, and N. Rathor, Karbala International Journal of Modern Science 1 (3), 159 (2015).
    67 J. Wiersig, Physical Review A 67 (2) (2003).
    68 R. F. Pierret, Semiconductor device fundamentals. (Pearson Education India, 1996).
    69 S. M. Sze and K. K. Ng, Physics of semiconductor devices. (John wiley & sons, 2006).
    70 R. Schlaf, H. Murata, and Z. H. Kafafi, Journal of Electron Spectroscopy and Related Phenomena 120 (1-3), 149 (2001).
    71 Y. H. Liu, S. J. Chang, and S. J. Young, Ecs Journal of Solid State Science and Technology 5 (12), R203 (2016).
    72 K. Safa, Optoelectronics and Photonics: Principles and Practices. (Pearson Education India, 2009).
    73 B. H. Lin, X. Y. Li, D. J. Lin, B. L. Jian, H. C. Hsu, H. Y. Chen, S. C. Tseng, C. Y. Lee, B. Y. Chen, G. C. Yin, M. Y. Hsu, S. H. Chang, M. T. Tang, and W. F. Hsieh, Sci Rep 9 (2019).
    74 Y. D. Chen, T. H. B. Ngo, Y. C. Chang, D. J. Lin, and H. C. Hsu, Journal of the Optical Society of America B-Optical Physics 35 (9), 2228 (2018).
    75 C. F. Du, C. H. Lee, C. T. Cheng, K. H. Lin, J. K. Sheu, and H. C. Hsu, Nanoscale Research Letters 9 (2014).
    76 D. M. Bagnall, Y. F. Chen, Z. Zhu, T. Yao, M. Y. Shen, and T. Goto, Applied Physics Letters 73 (8), 1038 (1998).
    77 X. H. Zhang, S. J. Chua, A. M. Yong, H. D. Li, S. F. Yu, and S. P. Lau, Applied Physics Letters 88 (19) (2006).
    78 Mark Fox, Optical Properties of Solids. (AAPT, 2002).

    下載圖示 校內:2022-08-05公開
    校外:2022-08-05公開
    QR CODE