| 研究生: |
陳韋志 Chen, Wei-jhih |
|---|---|
| 論文名稱: |
預測傾斜矩形平板上之自然對流熱傳特性 Estimation of Natural Convection Heat Transfer Characteristics on the Inclined Rectangular Plate |
| 指導教授: |
陳寒濤
Chen, Han-taw |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2009 |
| 畢業學年度: | 97 |
| 語文別: | 中文 |
| 論文頁數: | 110 |
| 中文關鍵詞: | 熱傳係數 、矩形鰭片 、傾斜角 、點熱源 、逆算法 |
| 外文關鍵詞: | rectangular fin, heat transfer coefficient, inclined, inverse scheme, heat source |
| 相關次數: | 點閱:74 下載:6 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文之逆算法係將有限差分法(Finite difference method)與最小平方
法(Least squares scheme)並配合實驗溫度量測來估算於自然對流(Free
convection)下,點熱源(Point heat source)、對應不同傾斜(Incline angle)角
之鰭片寬度及鰭片間距之垂直矩形鰭片上的平均熱傳係數(Average heat
transfer coefficient)、總熱傳量(Total heat transfer rate)以及鰭片效率(Fin
efficiency)。於進行逆算法之前而將整個鰭片分割成數個小區域,並假設
整個小區域之平均熱傳系數為常數。而後利用本文之逆算法及實驗量測
來估算每個小區域之平均熱傳系數。結果顯示,於鰭上之自然對流平均
熱傳係數值將會隨著鰭片間距增加而增加,但熱傳效率卻會減小並趨近
於一穩定值。當鰭片寬度增加時,鰭片上之自然對流平均熱傳係數值會
變小。為了欲驗證本文可靠性,本文之預測值將與課本經驗公式或相關
研究文獻相比較。
The inverse scheme of the finite-difference method and least-squares
scheme in conjunction with experimental temperature measurements, to
estimate the average heat transfer coefficient, total heat transfer rate, and fin
efficiency on the rectangular fin for various of heat source strength, inclined
angle, fin spacing and fin width in natural convection. The whole fin divided
into several sub-fin regions, before performing the inverse scheme. The
average heat transfer coefficient on each sub-fin region is assumed to be
constant. These average heat transfer coefficients can be estimated using the
present inverse scheme and experiment temperature measurements. The
results show that the average heat transfer coefficient on a fin increases with
increasing the fin spacing, and the fin efficiency decreases with increasing
the fin spacing. Besides, the average heat transfer coefficient will decrease
with increasing fin width. To enhance the accuracy and efficiency of the
present method, a good comparison between the present estimations and
previous results is demonstrated.
[1] T. E. Schmidt, “Heat transfer calculations for extended surfaces,” Refri.
Eng., pp. 351-357, 1949.
[2] W. Elenbass, “Heat Dissipation of Parallel Plates by Free Convection,”
Physica, Vol. IX, No.1, pp. 2-28, 1942.
[3] E. M. Sparrow, A. Haji-Sheikh, T. S. Lundgern, “The inverse problem in
transient heat conduction, ”J. Appl. Mech., Vol. 86, pp. 269-375, 1964.
[4] J. R. Bodoia, J. F. Osterle, “The Development of Free Convection Between
Heated Vertical Plates,” ASME J. Heat Transfer, Vol. 84, pp. 40-44, 1962.
[5] K. E. Starner, H. N. McManus, “An Experimental investigation of
Free-Convection Heat Transfer From Rectangular Fin arrays,” ASME J.
Heat Transfer, Vol.85, pp273-278, 1963.
[6] J. R. Welling and C. B. Wooldridge, “Free Convection Heat Transfer
Coefficients From Rectangular Vertical Fins,” ASME J. Heat Transfer, Vol.
87, pp.439-444, 1965.
[7] F. Harahap, H. N. McManus, “Natural Convection Heat Transfer From
Horizontal Rectangular Fin Arrays,” ASME J. Heat Transfer, Vol. 89,
pp.32-38, 19767.
[8] T. Fujii, H. Imura, “Natural-Convection Heat Transfer from a Plate with
Arbitrary Inclination,” Int. J. Heat Transfer, Vol. 15, pp. 755-767, 1972.
[9] K. G. T. Hollands, T. E. Unny, G. D. Raithby, L. Konicek, “Free convective
heat transfer across inclined air layers,” ASME J. Heat Transfer, pp. 189-193,
1976.
[10] J. H. Sununu, “The Effect of Spacing on the Efficiency of Extended
Surfaces for Natural Convection Cooling,” Proceedings of the National Elect.
Packaging and Production Conf., pp.30.41, 1963.
[11] L. F. Smith, “An Interferometric Investigation of Optimum Rectangular Fin
Geometry for Maximum Free-Convection Heat Transfer From a Finned
107
Horizontal Surface,” MSc thesis, The Ohio State University, 1963.
[12] C. D. Jones, L. F. Smith, “Optimum Arrangement of Rectangular Fins on
Horizontal Surfaces for Free-Convection Heat Transfer,” ASME J. Heat
Transfer, pp. 6-10, 1970.
[13] E. M Sparrow, A. Haji-Sheikh, T.s. Lundgern, “The inverse problem in
transient heat conduction, ” J. Appl. Mech., Vol. 86, pp. 369-375, 1964.
[14] N. M. Alnajem, M. N. zisik, “A direct analytical approach for solving
linear inverse heat conduction problems,” ASME J. Heat Tran., Vol. 107, pp.
700-703, 1985.
[15] J. V. Beck, “Calculation of surface heat flux from an integral temperature
history,” ASME J. Heat Tran,”, Vol. 62, pp. 46-51, 1962.
[16] J. V. Beck, “Surface heat flux determination using an integral method,” Nucl.
Eng. Des., Vol. 7, pp. 170-178, 1968.
[17] J. V. Beck, B. Litkouhi, C. R. Stclair, “Efficient numerical- solution of
nonlinear inverse heat-conduction problem,” Mech. Eng., Vol. 102, pp.
96-96, 1980.
[18] S. Sunil, J. R. N. Reddy, C. B. Sobhan, “Natural convection heat transfer
ftom a thin rectangular fin with a line source at the base – a finite difference
solution,” Heat Mass Transfer, Vol. 31, pp. 127-135, 1996.
[19] T. D. Jr., L. F. Milanez, “Natural convection due to a heat source on a
vertical plate,” Int. J. Heat Mass Transfer, Vol. 47, pp. 1227-1232, 2004.
[20] F. Lefvre*, C. L. Niliot, “The BEM for point heat source estimation:
application to multiple static sources and moving sources,” Int. J. Them. Sci.,
Vol. 41, pp536-545, 2002.
[21] C. L. Niliot, “The Boundary-Element method for the time-varying strength
estimation of point heat sources: application to a two-dimensional diffusion
system,” Numerical Heat Transfer, Part B, Vol. 33, pp. 301-321, 1998.
[22] R. A. Khachfe, Y. Jarny, “Determination of heat sources and heat transfer
coefficient for two-dimensional heat flow–numerical and experimental
study,” Int. J. Heat Mass Transfer, Vol. 44, pp. 1309-1322, 2001.
108
[23] J. Deans, J. Neal, “The use of effectiveness concepts to calculate the thermal
resistance of parallel plate heat sinks,” Heat Transfer Eng., Vol. 27, pp.
56-67, 2006.
[24] S. Lee, “Optimum design and selection of heat sinks,” Proceedings of 11th
IEEE Semi-Term Symposium, pp. 48-54, 1995.
[25] 劉建佳,Pentium 4 散熱模組底板具凸起物之散熱性能研究,國立台灣
科技大學機械工程研究所,碩士論文,2002.
[26] 張文奎,散熱鰭片擴散熱阻之分析,國立清華大學工程與系統科學研究
所,碩士論文,2002.
[27] H. T. Chen, J. P. Song, Y. T. Wang, “Prediction of heat transfer coefficient
on the fin inside one-tube plate finned-tube heat exchangers,” Int. J. Heat
Mass Transfer, Vol. 48, pp. 2697-2707, 2005.
[28] H. T. Chen, J. C. Chou, “Investigation of natural-convection heat transfer
coefficient from the vertical fin of finned-tube heat exchangers,” Int. J. Heat
Mass Transfer, Vol. 49, pp. 3034-3044, 1993.
[29] F. Kreith, M. S. Bohn, “Principles of heat transfer,” 5th ed., West Publishing
Company, Chap. 5, pp. 349-350, 1993.
[30] 劉立熙,根據實驗溫度量測值估算矩形鰭片上之熱傳特性,國立成功大
學機械工程所,碩士論文,2007。
[31] 徐國軒,以逆算法估算自然對流下之垂直矩形鰭片上的熱傳特性,國立
成功大學機械工程所,碩士論文,2008。
[32] 劉永智,以逆算法和實驗溫度量測估算CPU 上之散熱鰭片的熱傳係數,
國立成功大學機械工程所,碩士論文,2006。
[33] V. S. Arpaci, “Introduction to Heat Transfer,” pp. 580, 1999.
[34] A. Bejan, “Heat Transfer,” John Wiley & Sons, Inc., New York, pp. 53-62,
1993.
[35] F. E. M. Saboya, E. M. Sparrow, “Locak and average heat transfer
coefficients for one-row plate fin and tuve heat exchanger configurations,”
ASME J. of Heat Transfer, Vol. 96, pp. 265-272, 1974.
109
[36] T. J. Heindel, F. P. Incropera , S. Ramadhyani, “Enhanement of natural
convection heat transfer from an array of discrete heat sources,” Int. J. Heat
Mass Transfer, Vol. 39, pp. 479-490, 1996.
[37] F. P. Incropera, D. P. Dewitt, “Fundamentals of Heat and Mass Transfer,”
5th ed., John Wiley & Sons, Chap. 9, pp. 557, 2001.
[38] A. Bar-Cohen, W. M. Rohsenow, “Thermally optimum spacing of vertical,
natural convection cooled, parallel plates,” J. Heat Transfer, Vol. 106, pp.
116-123, 1984.
[39] K. Raznjecic, “Handbook of Thermodynamic Tables and Charts,”
McGraw-Hill, New York, 1976.