簡易檢索 / 詳目顯示

研究生: 陳韋志
Chen, Wei-jhih
論文名稱: 預測傾斜矩形平板上之自然對流熱傳特性
Estimation of Natural Convection Heat Transfer Characteristics on the Inclined Rectangular Plate
指導教授: 陳寒濤
Chen, Han-taw
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 110
中文關鍵詞: 熱傳係數矩形鰭片傾斜角點熱源逆算法
外文關鍵詞: rectangular fin, heat transfer coefficient, inclined, inverse scheme, heat source
相關次數: 點閱:74下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文之逆算法係將有限差分法(Finite difference method)與最小平方
    法(Least squares scheme)並配合實驗溫度量測來估算於自然對流(Free
    convection)下,點熱源(Point heat source)、對應不同傾斜(Incline angle)角
    之鰭片寬度及鰭片間距之垂直矩形鰭片上的平均熱傳係數(Average heat
    transfer coefficient)、總熱傳量(Total heat transfer rate)以及鰭片效率(Fin
    efficiency)。於進行逆算法之前而將整個鰭片分割成數個小區域,並假設
    整個小區域之平均熱傳系數為常數。而後利用本文之逆算法及實驗量測
    來估算每個小區域之平均熱傳系數。結果顯示,於鰭上之自然對流平均
    熱傳係數值將會隨著鰭片間距增加而增加,但熱傳效率卻會減小並趨近
    於一穩定值。當鰭片寬度增加時,鰭片上之自然對流平均熱傳係數值會
    變小。為了欲驗證本文可靠性,本文之預測值將與課本經驗公式或相關
    研究文獻相比較。

    The inverse scheme of the finite-difference method and least-squares
    scheme in conjunction with experimental temperature measurements, to
    estimate the average heat transfer coefficient, total heat transfer rate, and fin
    efficiency on the rectangular fin for various of heat source strength, inclined
    angle, fin spacing and fin width in natural convection. The whole fin divided
    into several sub-fin regions, before performing the inverse scheme. The
    average heat transfer coefficient on each sub-fin region is assumed to be
    constant. These average heat transfer coefficients can be estimated using the
    present inverse scheme and experiment temperature measurements. The
    results show that the average heat transfer coefficient on a fin increases with
    increasing the fin spacing, and the fin efficiency decreases with increasing
    the fin spacing. Besides, the average heat transfer coefficient will decrease
    with increasing fin width. To enhance the accuracy and efficiency of the
    present method, a good comparison between the present estimations and
    previous results is demonstrated.

    摘 要 I ABSTRACT II 致 謝 III 目 錄 IV 表 目 錄 VI 圖 目 錄 VIII 符 號 說 明 XII 第一章 緒論 1 1-1研究背景 1 1-2文獻回顧 3 1-3研究目的 6 1-4研究重點與本文架構 7 第二章 二維之理論分析與數值模擬 9 2-1簡介 9 2-2建立數學模式 10 2-2-1數值方法分析 12 2-2-2逆向熱傳導方法 16 2-3結果與討論 20 2-3-1溫度量測誤差對預測值之影響 21 2-3-2起始猜測值對預測值之影響 22 2-3-3溫度量測位置與數目對預測值之影響 23 2-4結論 23 第三章 實驗操作與數據分析 37 3-1簡介 37 3-2實驗設備 38 3-3實驗步驟 41 3-4實驗組別 43 3-5實驗結果與數據分析 44 3-5-1鰭片根部等熱通量之根部溫度函數對本文預測值的影響 44 3-5-2具點熱源時鰭片根部熱通量對熱傳係數影響 46 3-5-3 無點熱源時傾斜角度θ對熱傳係數的影響 47 3-5-4無點熱源時鰭片寬度H對熱傳係數之影響 48 3-5-5無點熱源時鰭片間距S對熱傳係數之影響 48 3-5-6課本驗證 50 3-6結論 53 第四章 綜合結論與未來展望 103 4-1數值模擬結果 103 4-2實驗結果 103 4-3綜合討論 104 4-4未來發展與建議 105 參 考 文 獻 106 自 述 110

    [1] T. E. Schmidt, “Heat transfer calculations for extended surfaces,” Refri.
    Eng., pp. 351-357, 1949.
    [2] W. Elenbass, “Heat Dissipation of Parallel Plates by Free Convection,”
    Physica, Vol. IX, No.1, pp. 2-28, 1942.
    [3] E. M. Sparrow, A. Haji-Sheikh, T. S. Lundgern, “The inverse problem in
    transient heat conduction, ”J. Appl. Mech., Vol. 86, pp. 269-375, 1964.
    [4] J. R. Bodoia, J. F. Osterle, “The Development of Free Convection Between
    Heated Vertical Plates,” ASME J. Heat Transfer, Vol. 84, pp. 40-44, 1962.
    [5] K. E. Starner, H. N. McManus, “An Experimental investigation of
    Free-Convection Heat Transfer From Rectangular Fin arrays,” ASME J.
    Heat Transfer, Vol.85, pp273-278, 1963.
    [6] J. R. Welling and C. B. Wooldridge, “Free Convection Heat Transfer
    Coefficients From Rectangular Vertical Fins,” ASME J. Heat Transfer, Vol.
    87, pp.439-444, 1965.
    [7] F. Harahap, H. N. McManus, “Natural Convection Heat Transfer From
    Horizontal Rectangular Fin Arrays,” ASME J. Heat Transfer, Vol. 89,
    pp.32-38, 19767.
    [8] T. Fujii, H. Imura, “Natural-Convection Heat Transfer from a Plate with
    Arbitrary Inclination,” Int. J. Heat Transfer, Vol. 15, pp. 755-767, 1972.
    [9] K. G. T. Hollands, T. E. Unny, G. D. Raithby, L. Konicek, “Free convective
    heat transfer across inclined air layers,” ASME J. Heat Transfer, pp. 189-193,
    1976.
    [10] J. H. Sununu, “The Effect of Spacing on the Efficiency of Extended
    Surfaces for Natural Convection Cooling,” Proceedings of the National Elect.
    Packaging and Production Conf., pp.30.41, 1963.
    [11] L. F. Smith, “An Interferometric Investigation of Optimum Rectangular Fin
    Geometry for Maximum Free-Convection Heat Transfer From a Finned
    107
    Horizontal Surface,” MSc thesis, The Ohio State University, 1963.
    [12] C. D. Jones, L. F. Smith, “Optimum Arrangement of Rectangular Fins on
    Horizontal Surfaces for Free-Convection Heat Transfer,” ASME J. Heat
    Transfer, pp. 6-10, 1970.
    [13] E. M Sparrow, A. Haji-Sheikh, T.s. Lundgern, “The inverse problem in
    transient heat conduction, ” J. Appl. Mech., Vol. 86, pp. 369-375, 1964.
    [14] N. M. Alnajem, M. N. zisik, “A direct analytical approach for solving
    linear inverse heat conduction problems,” ASME J. Heat Tran., Vol. 107, pp.
    700-703, 1985.
    [15] J. V. Beck, “Calculation of surface heat flux from an integral temperature
    history,” ASME J. Heat Tran,”, Vol. 62, pp. 46-51, 1962.
    [16] J. V. Beck, “Surface heat flux determination using an integral method,” Nucl.
    Eng. Des., Vol. 7, pp. 170-178, 1968.
    [17] J. V. Beck, B. Litkouhi, C. R. Stclair, “Efficient numerical- solution of
    nonlinear inverse heat-conduction problem,” Mech. Eng., Vol. 102, pp.
    96-96, 1980.
    [18] S. Sunil, J. R. N. Reddy, C. B. Sobhan, “Natural convection heat transfer
    ftom a thin rectangular fin with a line source at the base – a finite difference
    solution,” Heat Mass Transfer, Vol. 31, pp. 127-135, 1996.
    [19] T. D. Jr., L. F. Milanez, “Natural convection due to a heat source on a
    vertical plate,” Int. J. Heat Mass Transfer, Vol. 47, pp. 1227-1232, 2004.
    [20] F. Lefvre*, C. L. Niliot, “The BEM for point heat source estimation:
    application to multiple static sources and moving sources,” Int. J. Them. Sci.,
    Vol. 41, pp536-545, 2002.
    [21] C. L. Niliot, “The Boundary-Element method for the time-varying strength
    estimation of point heat sources: application to a two-dimensional diffusion
    system,” Numerical Heat Transfer, Part B, Vol. 33, pp. 301-321, 1998.
    [22] R. A. Khachfe, Y. Jarny, “Determination of heat sources and heat transfer
    coefficient for two-dimensional heat flow–numerical and experimental
    study,” Int. J. Heat Mass Transfer, Vol. 44, pp. 1309-1322, 2001.
    108
    [23] J. Deans, J. Neal, “The use of effectiveness concepts to calculate the thermal
    resistance of parallel plate heat sinks,” Heat Transfer Eng., Vol. 27, pp.
    56-67, 2006.
    [24] S. Lee, “Optimum design and selection of heat sinks,” Proceedings of 11th
    IEEE Semi-Term Symposium, pp. 48-54, 1995.
    [25] 劉建佳,Pentium 4 散熱模組底板具凸起物之散熱性能研究,國立台灣
    科技大學機械工程研究所,碩士論文,2002.
    [26] 張文奎,散熱鰭片擴散熱阻之分析,國立清華大學工程與系統科學研究
    所,碩士論文,2002.
    [27] H. T. Chen, J. P. Song, Y. T. Wang, “Prediction of heat transfer coefficient
    on the fin inside one-tube plate finned-tube heat exchangers,” Int. J. Heat
    Mass Transfer, Vol. 48, pp. 2697-2707, 2005.
    [28] H. T. Chen, J. C. Chou, “Investigation of natural-convection heat transfer
    coefficient from the vertical fin of finned-tube heat exchangers,” Int. J. Heat
    Mass Transfer, Vol. 49, pp. 3034-3044, 1993.
    [29] F. Kreith, M. S. Bohn, “Principles of heat transfer,” 5th ed., West Publishing
    Company, Chap. 5, pp. 349-350, 1993.
    [30] 劉立熙,根據實驗溫度量測值估算矩形鰭片上之熱傳特性,國立成功大
    學機械工程所,碩士論文,2007。
    [31] 徐國軒,以逆算法估算自然對流下之垂直矩形鰭片上的熱傳特性,國立
    成功大學機械工程所,碩士論文,2008。
    [32] 劉永智,以逆算法和實驗溫度量測估算CPU 上之散熱鰭片的熱傳係數,
    國立成功大學機械工程所,碩士論文,2006。
    [33] V. S. Arpaci, “Introduction to Heat Transfer,” pp. 580, 1999.
    [34] A. Bejan, “Heat Transfer,” John Wiley & Sons, Inc., New York, pp. 53-62,
    1993.
    [35] F. E. M. Saboya, E. M. Sparrow, “Locak and average heat transfer
    coefficients for one-row plate fin and tuve heat exchanger configurations,”
    ASME J. of Heat Transfer, Vol. 96, pp. 265-272, 1974.
    109
    [36] T. J. Heindel, F. P. Incropera , S. Ramadhyani, “Enhanement of natural
    convection heat transfer from an array of discrete heat sources,” Int. J. Heat
    Mass Transfer, Vol. 39, pp. 479-490, 1996.
    [37] F. P. Incropera, D. P. Dewitt, “Fundamentals of Heat and Mass Transfer,”
    5th ed., John Wiley & Sons, Chap. 9, pp. 557, 2001.
    [38] A. Bar-Cohen, W. M. Rohsenow, “Thermally optimum spacing of vertical,
    natural convection cooled, parallel plates,” J. Heat Transfer, Vol. 106, pp.
    116-123, 1984.
    [39] K. Raznjecic, “Handbook of Thermodynamic Tables and Charts,”
    McGraw-Hill, New York, 1976.

    下載圖示 校內:2012-07-27公開
    校外:2014-07-27公開
    QR CODE