簡易檢索 / 詳目顯示

研究生: 張義貴
Chang, Yi-Kuei
論文名稱: 一維奈米材料與奈米線電晶體之研究
The study of one-dimensional nanomaterials and nanowire field-effect transistor
指導教授: 洪昭南
Hong, Chau-Nan
學位類別: 博士
Doctor
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 223
中文關鍵詞: 氮化銦氧化鋅電晶體奈米線
外文關鍵詞: zinc oxide, transistor, nanowire, Indium nitride
相關次數: 點閱:55下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要分為兩大部分:第一部份為一維奈米材料的合成,包括氧化鋅奈米線及氮化銦奈米線。在氧化鋅奈米線的合成方面,我們利用水熱法以Zinc acetate及Hexamethylenetetramine (HMTA)為前趨物在不同成核層上成長,包括以醋酸鋅為前趨物旋轉塗佈低溫燒結而成的薄膜、濺鍍氧化鋅薄膜、蒸鍍銀薄膜及銀奈米粒子。經XRD與TEM鑑定氧化鋅奈米線為完美單晶,且沿著 方向成長。而在氮化銦奈米線的合成方面,我們則是使用自行開發的電漿輔助高溫爐系統來成長。由XRD、TEM、Raman及ESCA分析得知所成長為完美的單晶氮化銦奈米線。當基板溫度設定從550 oC變為580 oC時,氮化銦的結構由奈米線轉變為上尖下寬的奈米帶。

    第二部份則為奈米線電晶體的製備。首先是以PDMS為轉移基板利用滾壓法製作具單一方向排列的奈米線陣列來製備奈米線電晶體。電晶體特性為subthreshold slope~360 mV/dec,electron mobility~91 cm2/Vs,threshold voltage~0.25V。另外為了解決利用介電泳排列奈米線後,奈米線與電極接觸電阻過高的問題。我們利用熱壓法及電極自我對準技術來解決。熱壓法是利用鍍有類鑽碳膜的矽基板為壓版,在180oC高壓下將奈米線壓進電極中。由電性曲線圖可知,兩端電阻在經過熱壓後已大幅降低。而自我對準技術則是利用從基板背面曝光的方式,以第一層金屬電極為光罩,將第二層電極準確地製作在第一層電極之上。在鍍上電極後可大幅地將低接觸電阻,也解決了一般以光微影定義第二層圖案需對準的問題。

    There are two main subjects have been studied in this essay. The first part is the synthesis of one-dimensional nanomaterials including Zinc Oxide (ZnO) and Indium Nitride (InN) nanowires. ZnO nanowires were synthesized by hydrothermal using Zinc acetate and Hexamethylenetetramine as precursor on different nucleation layers like spin-coated Zinc acetate layer, sputtered ZnO film, evaporated Ag film and Ag nanoparticles. The ZnO nanowire are single-crystalline and grow along [0001] by XRD and TEM analysis. Besides, high-quality Indium nitride (InN) nanowires were synthesized in plasma-assisted furnace. X -ray diffraction, transmission electron microscopy and Raman spectra further showed that the as-synthesized InN nanowires were perfect single crystallites of wurtzite structure with the growth direction along [110]. As the substrate temperature change from 550 to 580oC, Indium nitride nanowires transform to tapered nenobelts.

    The second part is about the fabrication of nanowire field-effect transistor (NW-FET). The well-ordered nanowire arrays were obtained by roll-transfer using PDMS as transfer sheet. ZnO NW-FETs fabricated by this method exhibit high performances with the threshold voltage around 0.25 V, the current on/off ratio as high as 105, the subthreshold slope of 360 mV/dec, and the field-effect mobility around 90 cm2/Vs. In order to overcome the problem about poor contacts between nanowires and electrodes after dielectricphoresis (DEP), hot-pressing and self-align were applied. The hot-pressing of nanowires on the electrodes was employed to sink into electrodes and ensure good contacts between the nanowires and the electrodes. And the self-align technique was employed to deposit second metal layer on nanwire-first metal layer. The second metal layer deposition would overcome the problem of the poor contact between nanowire and electrode after DEP.

    中文摘要 Ι 英文摘要 ΙΙΙ 致謝 V 目錄 VΙΙ 表目錄 XΙV 圖目錄 XV 第一章 緒論 1 1-1 前言 1 1-2 奈米材料之發展現況 3 1-3 奈米元件之發展現況 6 1-3-1 奈米元件之發展瓶頸 6 1-3-2 一維奈米元件之應用 7 1-4 研究動機 9 第二章 理論基礎與文獻回顧 13 2-1成長一維奈米材料的方法 13 2-1-1 Vapor-Liquid-Solid (VLS)機制 14 2-1-2 氧化物促進成長法(Oxide assisted growth) 16 2-1-3 Vapor-Solid (VS)機制 17 2-1-4 水熱法 (hydrothermal) 17 2-2 氧化鋅的結構與特性 24 2-3氧化鋅奈米線之成長 28 2-3-1氣-液-固機制成長氧化鋅奈米線 28 2-3-2 MOCVD法成長氧化鋅奈米線 30 2-3-3 以水熱法成長氧化鋅奈米線 31 2-4 氮化銦的結構與特性… 38 2-5 氮化銦奈米線的成長 41 2-5-1 氣-液-固機制成長氮化銦奈米線 41 2-5-2 氣-固機制成長氮化銦奈米線 42 2-6 電漿理論 48 2-6-1 電漿定義與特性 48 2-6-2 電介質放電 (Dielectric barrier discharge, DBD) 53 2-7電晶體簡介 56 2-8 FET工作原理與理論計算 59 2-8-1兩端特性 59 2-8-2三端特性 59 2-8-3 載子遷移率(Carrier Mobility) 60 2-8-4 臨界電壓值(Threshold voltage, Vth) 61 2-8-5 轉移電導值(Transconductance, gm) 62 2-8-6 開關特性(On/off ratio) 62 2-8-7 次起始擺幅(Substhreshold swing, S) 62 2-9 奈米線電晶體研究近況 65 2-9-1平面場效電晶體( planar FETs) 66 2-9-2 多層堆疊奈米線電晶體 69 2-9-3 核/殼(core/shell)奈米線電晶體 70 2-9-4 環繞式閘極(surrounding-gate)奈米線電晶體 71 2-10 奈米線的組裝 81 2-10-1 間接組裝 82 2-10-2 直接組裝 86 第三章 實驗步驟與方法 97 3-1實驗流程 97 3-2 實驗設備 98 3-2-1氧化鋅奈米結構成長設備 98 3-2-1-1管型高溫爐系統 98 3-2-1-2 抽氣系統 98 3-2-1-3 壓力監控系統 98 3-2-1-4 流量控制系統 99 3-2-2氮化銦奈米結構成長設備 99 3-2-2-1 電漿輔助管型高溫爐系統設計 99 3-2-2-2 管型高溫爐系統 99 3-2-2-3 電漿電源供應器 100 3-2-2-4 真空系統 100 3-2-2-5 壓力監控系統 100 3-2-2-6 流量控制系統 101 3-2-3反應式離子蝕刻系統(Reactive ion etching, RIE) 101 3-2-4光罩對準機(Mask aligner) 101 3-2-5電子槍鍍膜系統(electron-gun thermal evaporation) 102 3-2-6介電電泳電源供應器 103 3-2-7 示波器(Oscilloscope) 104 3-2-8 熱壓印機 104 3-3實驗材料 105 3-3-1 基板材料 105 3-3-2 實驗藥品 105 3-3-3 金屬材料 106 3-3-4 基板清洗溶劑及實驗氣體 106 3-4實驗步驟 107 3-5實驗鑑定 116 3-5-1 掃描式電子顯微鏡 116 3-5-2 穿透式電子顯微鏡 117 3-5-3 X光繞射分析儀 118 3-5-4 微拉曼光譜儀 118 3-5-5 化學分析能譜儀 120 3-5-6 螢光光譜儀 120 3-5-7電性量測系統 121 第四章 結果與討論 130 4-1 以水熱法成長氧化鋅奈米線 130 4-1-1 改變不同成長時間成長氧化鋅奈米線 130 4-1-2 改變成核層燒結條件對奈米線成長的影響 131 4-1-3 不同基板上成長氧化鋅奈米線 132 4-1-4 材料分析 133 4-1-5 小結 135 4-2以電漿輔助化學氣相沈積法成長氮化銦奈米線 142 4-2-1 氣體組成效應 142 4-2-1-1 表面型態分析 143 4-2-1-2 晶體結構分析 144 4-2-1-3 穿透式電子顯微鏡分析 145 4-2-1-4 拉曼光譜分析 147 4-2-1-5 化學成分分析 147 4-2-2成長壓力效應 148 4-2-3 基板溫度效應 149 4-2-4 氮化銦奈米帶 149 4-2-4-1 晶體結構分析 150 4-2-4-2 奈米帶成長機制探討 150 4-2-5電漿功率效應 152 4-2-6 小結 152 4-3以滾壓法製備氧化鋅奈米線電晶體 175 4-3-1以矽基板轉印奈米線 175 4-3-2以PET基板轉印奈米線 176 4-3-3以PET/PMMA基板轉印奈米線 176 4-3-4以PDMS轉印奈米線 177 4-3-5奈米線電晶體電性分析 179 4-3-6小結 180 4-4結合介電泳法與熱壓法製備氧化鋅奈米線電晶體 190 4-4-1 以電極厚度為100 nm進行熱壓法製作奈米線電晶體 191 4-4-2 以電極厚度為380 nm進行熱壓法製作奈米線電晶體 193 4-4-3 小結 195 4-5結合介電泳法與自我對準技術製備氧化鋅奈米線電晶體 201 4-5-1 以光阻直接作為介電層之電晶體製作 201 4-5-2 披覆PVP為介電層之電晶體製作 203 4-5-3 小結 203 第五章 結論 209 參考文獻 213

    [1] D M Eigler and E K Schweizer, Nature, 344, 524 (1990).
    [2] M F Crommie, C P Lutz and D M Eigler, Science, 262, 218 (1993).
    [3] S Iijima, Nature, 354, 56 (1991).
    [4] C V Nguyen, C So, R M Stevens, Y Li, L Delziet, P Sarrazin, and M Meyyappan, J. Phys. Chem. B, 108, 2816 (2004).
    [5]G E Moore, Electronics, 38 (1965).
    [6] Y Wu and P Yang, J. Am. Chem. Soc. 123, 3165 (2001).
    [7] R S Wagner Whisker Technology, Wiley-Interscience, New York (1970)
    [8] S T Lee, N Wang, Y F Zhang and Y H Tang, MRS Bull. 24, 36 (1999).
    [9] B Gates, B Mayers, B Cattle and Y Xia, Adv. Funct. Mater. 12, 219 (2002).
    [10] B Messer, J H Song, M Huang, Y Wu, F Kim and P Yang, Adv. Mater. 12, 1526(2000).
    [11] M Zheng, L Zhang, X Zhang, J Zhang and G Li, Chem. Phys. Lett. 334, 298 (2001).
    [12] T J Trentler, K M Hickman, S C Geol, A M Viano, P C Gibbons and W E Buhro, Science 270, 1791 (1995).
    [13] S H Yu, J Yang, Z H Han, R Y Yang, Y T Qian and Y H Zhang, J. Solid State Chem. 147, 637 (1999).
    [14] J D Meindl, Q Chen and J A Davis, Science 293, 2044(2001).
    [15] Y Cui, Z Zhong, D Wang, W U Wang and C M Lieber, Nano Lett 3, 149 (2003).
    [16] X Duan, C Niu, V Sahi, J Chen, J W Parce, S Empedocles and J L Goldman, Nature 425, 274 (2003).
    [17] M-C Jeong, B-Y Oh, M-H Ham, S-W Lee and J-M Myoung, Small 3, 568 (2007).
    [18] M Law, L E Greene, J C Johnson, R Saykally and P Yang, Nat. Mater. 4, 455 (2005).
    [19] D Zhang, Z Liu and C Zhou C, Mater. Res. Soc. Symp. Proc. 828, A2.7 (2004).
    [20] J C Johnson, H Yan, R D Schaller, L H Haber, R J Saykally and P Yang P, J. Phys. Chem. B 105, 11387 (2001).
    [21] G Zheng, F Patolsky, Y Cui, W U Wang and C M Lieber, Nat. Biotechnol. 23 ,1294 (2005).
    [22] Y Xia, P Yang, Y Sun, Y Wu, B Mayer, B Gates, Y Ying, F Kim, H Yan, Adv. Mater. 15, 253 (2003).
    [23] R S Wanger and W C Ellis, Appl.Phys. Lett. 4, 89 (1964)
    [24] X F Duan and C M Lieber, Adv. Mater. 12, 298 (2000).
    [25] X F Duan and C M Lieber, J. Am. Chem. Soc. 122, 188 (2000).
    [26] Y Wu and P Yang, J. Am. Chem. Soc. 123, 3165 (2001).
    [27] M Yazawa, M Koguchi, A Muto, M Ozawa and K Hiruma, Appl. Phys. Lett. 61, 2051 (1992).
    [28] A M Morales and C M Lieber, Science, 279, 208 (1998).
    [29] M H Huang, Y Wu, H Feick, N Tran, E Weber and P Yang, Adv. Mater. 13, 113 (2001).
    [30] Y C Choi, W S Kim, Y S Park, S M Lee, D J Bae, Y H Lee, G-S Park, W B Choi, N S Lee and J M Kim, Adv. Mater. 12, 746 (2000).
    [31] J Hu, M Ouyang, P Yang and C M Lieber, Nature, 399, 48 (1999).
    [32] H Omi and T Ogino, Appl. Phys. Lett. 71, 2163 (1997).
    [33] A B Greytak, L J Lauhon, M S Gudiksen and C M Lieber, Appl. Phys. Lett. 84, 4176 (2004).
    [34] S H Yun, A Dibos, J Z Wu and D-K Kim, Appl. Phys. Lett. 84, 2892 (2004).
    [35] D Wang, J G Lu, C J Otten and W E Buhro, Appl. Phys. Lett. 83, 5280 (2003).
    [36] C C Chen, C C Yeh, C H Chen, M Y Yu, H L Liu, J J Wu, K H Chen, L C Chen, J Y Peng and Y F Chen, J .Am. Chem. Soc. 123, 2791 (2001).
    [37] Y C Zhu, Y Bando, D F Xue and D Golberg, Adv. Mater. 16, 631 (2004).
    [38] Q Li, X Gong, C Wang, J Wang, K. ip, S. Hark, Adv. Mater. 16, 1436 (2004).
    [39] C Ye, G Meng, Y Wang, Z Jiang, L Zhang, J. Phys. Chem. B 106, 10338 (2002).
    [40] K W Chang and J J Wu, J. Phys. Chem. B 106, 7796 (2002).
    [41] R Hupta, Q Xiong, G D Mahan and P C Eklund, Nano. Lett. 3, 1745 (2003).
    [42] E P A M Bakkers and M A Verheijen, J. Am. Chem. Soc. 125, 3440 (2003).
    [43] M S Gudisksen, J Wang and C M Lieber, J. Phys. Chem. B 106, 4036 (2002).
    [44] S C Lyu, Y Zhnag, C J Lee, H Ruh and H J Lee, Chem. Mater. 15, 3294 (2003).
    [45] P Gao and Z L Wang, J. Phys. Chem. B, 106, 12653 (2002).
    [46] C Tang, Y Bando and T Sato, J. Phys. Chem. B, 106, 7449 (2002).
    [47] J W Hu, Q Li, X M Meng, C S Lee and S T Lee, J. Phys. Chem. B 106, 9526 (2002).
    [48] K W Chang and J J Wu, J. Phys. Chem. B, 108, 1838 (2004).
    [49] R.Q. Zhang, T.S. Chu, H.F. Cheung, N. Wang, S.T. Lee. Mater. Sci. Eng. C. 16, 31 (2001).
    [50] S T Lee, N Wang and C S Lee, Mater. Sci. Eng. A. 286,16(2000).
    [51] H J Fan, R Scholz, F M Kolb and M Zacharias, Appl. Phys. Lett. 85, 4142 (2004).
    [52] G W Morey, J. Am. Ceram. Soc. 36, 279 (1953).
    [53] T. Sugimoto, Adv. Colloid Interface Sci. 28, 65 (1987).
    [54]Y Chen, D M Bagnall, H Koh, K Park, K Hiraga, Z Zhu and T Yao, J. Appl. Phys. 84, 3912 (1998).
    [55]A Ohyomo, M Kawasaki, Y Sakurai, I Ohkubo, R Shiroki, Y Yoshida, T Yasuda, Y Segawa and H Koinuma, Mater.Sci. Eng. B. 56, 263 (1998).
    [56] W I Park, G C Yi, M Kim and S J Pennycook, Adv. Mater. 15. 526 (2003).
    [57] 陳文華, 成功大學化工所碩士論文, 2002.
    [58] R A Powell, W E Spicer and J C McMenamin, Phys. Rev. B, 6, 3056 (1972).
    [59] D M Hofmann, A Hofstaetter, F Leiter, H Zhou, F Henecker and B K Meyer, S B Orlinskii, J Schmidt and P G Baranov, Phys. Rev. Lett. 88, 045504 (2002).
    [60] E G Bylander, J. Appl. Phys. 49, 1188 (1978).
    [61] H L Hartnagel, A K Jagadish, Semiconducting Transparent Thin
    Films, published by Institute of Physics Publishing (1995).
    [62] Z L Wang, Materials Today, 7, 26 (2004).
    [63] Y Zhang, N Wang, S Gao, R He, S Miao, J Liu, J Zhu and X Zhang Chem. Mater. 14, 3564 (2002).
    [64] B D Yao, Y F Chan, N Wang, Appl. Phys. Lett. 81, 757 (2002)
    [65] Y C Kong, D P Yu, B Zhang, W Fang, S Q Feng, Appl. Phys. Lett. 78, 407 (2001).
    [66] T Y Kima, J Y Kimb, M S Kumara, E-K Suhb and K S Nahma, J. Cry. Growth. 270, 491 (2004).
    [67] L Dai, X L Chen, W J Wang, T Zhou and B Q Hu, J. Phys.: Condens. Matter 15, 2221 (2003).
    [68] Y Dai, Y Zhang, Q K Li and C W Nan, Chem. Phys. Lett. 358, 83 (2002).
    [69] S C Lyu, Y Zhang, C J Lee, H Ruh and H J Lee, Chem. Mater. 15, 3294 (2003).
    [70] S Y Li, C Y Lee and T Y Tseng, J. Cryst. Growth, 247, 357 (2003).
    [71] Y Ding, P X Gao and Z L Wang, J. Am. Chem. Soc. 126, 2066 (2004).
    [72] Z W Pan, S Dai, C M Rouleau and D H Lowndes, Angew. Chem. Int. Ed. 44, 274 (2005).
    [73] W I Park, D H Kim, S W Jung and G C Yi, Appl. Phys. Lett. 80, 4232 (2002).
    [74] W I Park, G C Yi, M Y Kim and S J Pennycook, Adv. Mater. 14, 1841 (2002).
    [75] W I Park, G C Yi, M Y Kim and S J Pennycook, Adv. Mater. 15, 526 (2003).
    [76] S J An, W I Park, G C Yi, Y J Kim, H B Kang and M Kim, Appl. Phys. Lett. 84, 3612 (2004).
    [77] K Ogata, K Maejima and S Fujita, J. Cryst. Growth 248, 25 (2003).
    [78] B P Zhang, N T Binh, Y Segawa, K Wakatsuki and N Usami, Appl. Phys. Lett. 83, 1635 (2003).
    [79] J J Wu and S C Liu, Adv. Mater. 14, 215 (2002).
    [80] L Vayssieres, K Keis, S-E Lindquist and A Hagfeldt, J. Phys. Chem. B 105, 3350 (2001).
    [81] L Vayssieres, Adv. Mater. 15, 464 (2003).
    [82] L E Greene, M Law, J Goldberger, F Kim, J C Johnson, Y Zhang, R J Saykally and P Yang, Angew. Chem. Int. Ed. 42, 3031(2003).
    [83] L E Greene, M Law, D H Tan, M Montano, J Goldberger, G Somorjai and P Yang, Nano. Lett. 5, 1231 (2005).
    [84] Y Tak Y and K Yong, J. Phys. Chem. B 109, 19263 (2005).
    [85] J B Cui, C P Daghlian, U J Gibson, R Püsche, P Geithner and L Ley J. Appl. Phys. 97, 044315(2005).
    [86] R B M Cross, M M De Souza and E M Sankara Narayanan, Nanotechonology 16, 2188(2005).
    [87] Q Li, V Kumar, Y Li, H Zhang, T J Marks and R P H Chang, Chem. Mater. 17, 1001 (2005).
    [88] J G Lozano, F M Morales, R Garcia, D Gonzalez, V.Lebedev, C Y Wang, V Cimalla and O Ambacher, Appl. Phys. Lett. 90, 091901 (2007).
    [89] Z G Qian, W Z Shen, H Ogawa and Q X Guo, J. Phys.: Condens. Matter, 16, R381 (2004).
    [90] S Nakamura, Y Harada and M. Seno, Appl. Phys. Lett. 58, 2021 (1991).
    [91] S N Mohammad and H Morkoc, Prog. Quant. Electron. 20, 361 (1996).
    [92] V W L Chin, T L Tansely and T Osotchan, J. Appl. Phys. 75, 7365 (1994).
    [93] B E Foutz, S K O’Leary, M S Shur and L F Eastman, J. Appl. Phys. 85, 7727 (1999).
    [94] R Ascazubi, I Wilke, K Denniston, H Lu and W J Schaff, Appl. Phys. Lett. 84, 4810 (2004).
    [95] S K Pugh, D J Dugdale, S Brand and R A Abram, Semicond. Sci. Technol. 14, 23 (1999).
    [96] M Yoshimoto, H Yamamoto, W Huang, H Harima, J Saraie, A Chayahara and Y Horino, Appl. Phys. Lett. 83, 3480 (2003).
    [97] A G Bhuiyan, K Sugita, K Kasashima, A Hashimoto, A Yamamoto and V Yu Davydov, Appl. Phys. Lett. 83, 4788 (2003).
    [98] J Wu, W Walukiewicz, K M Yu, J W Ager III, E E Haller, H Lu, W J Schaff, Y Saito and Y Nanishi, Appl. Phys. Lett. 80, 3967 (2002).
    [99] H Lu, W J Schaff, J Hwang, H Wu, G Koley and L F Eastman, Appl. Phys. Lett. 79, 1489 (2001).
    [100] T Matsuoka, H Okamoto, M Nakao, H Harima,and E Kurimoto, Appl. Phys. Lett. 81, 1246 (2002).
    [101] Y Huang, H Wang, Q Sun, J Chen, D Y Li, Y T Wang and H Yang, J. Cryst. Growth. 276, 13 (2005).
    [102] S Gwo, C L Wu, C H. Shen, H W Lin, H Y Chen and H Ahn, Proc. of SPIE, 6134, 61340L-1 (2006).
    [103] A G Bhuiyan, T Tanaka, K Kasashima, A Hashimoto and A Yamaoto, Jpn. J. Appl. Phys. 42, 7284 (2003).
    [104] J Aderhold, V Yu Davydov, F Fedler, D Mistele, H Klausing, T Rotter, O Semchinova, J Stemmer and J Graul, Proc. of SPIE, 4086, 82 (2000).
    [105] J Grandal, M A Sanchez-Garcı’ a, F Calle and E Calleja, Phys. Status Solidi (c), 2, 2289 (2005).
    [106] A G Bhuiyan, A Hashimoto and A Yamamoto, J. Appl. Phys. 94, 2779 (2003).
    [107] J Goldberger, R He, Y Zhang, S Lee, H Yan, H Choi and P Yang, Nature, 422, 599 (2003).
    [108] C H Liang, L C Chen, J S Hwang, K H Chen, Y T Hung and Y F Chen, Appl. Phys. Lett. 81, 22 (2002).
    [109] C H Shen, H Y Chen, H W Lin, S Gwo, A A Klochikhin and V Yu Davydov, Appl. Phys. Lett. 88, 253104 (2006).
    [110] T Stoica, R Meijers, R Calarco, T Richter and H Luth, J. Cryst. Growth. 290, 241 (2006).
    [111] M S Hu, G M Hsu, K H Chen, C J Yu, H C Hsu, L C Chen, J S Hwang, L S Hong and Y F Chen, Appl. Phys. Lett. 90, 123109 (2007).
    [112] H Y Xu, Z Liu, X T Zhang and S K Hark, Appl. Phys. Lett. 90, 113105 (2007).
    [113] S C Shi, C F Chen, G M Hsu, J S Hwang, S.Chattopadhyay, Z H Lan, K H Chen and L C Chen, Appl. Phys. Lett. 87, 203103 (2005).
    [114] S Vaddiraju, A Mohite, A Chin, M Meyyappan, G Sumanasekera, B W Alphenaar and M K Sunkara, Nano Lett. 5, 1625 (2005).
    [115] Y J Bai, Z G Liu, X G Xu, D L Cui, X P Hao, X Feng and Q L Wang, J. Cryst. Growth. 241, 189 (2002).
    [116] S D Dingman, N P Rath, P D Markowitz, P C Gibbons and W E Buhro, Angew. Chem. Int. Ed. 39, 1470 (2000).
    [117] E A Brandes, Smithells Metals Reference Book, Chapter 8, 9, 11, Butterworths (1983).
    [118] C K Chao, J I Chyi, C N Hsiao, C C Kei, S Y Kuo, H S Chang and T M Hsu, Appl. Phys. Lett. 88, 233111 (2006).
    [119] H J Park, O Kryliouk, T Anderson, D Khokhlov and T Burbaev, Physica E, 37, 142 (2007).
    [120] J R Roth, "Industrial plasma engineering-Volume 1: Principles Institute of Physics", Publishing in London, (1995)
    [121] S M Sze and K NgKwok, Physics of Semiconductor Devices, 3rd edition, Wiley-Interscience (2007)
    [122] S M Sze, Physics of semiconductor devices (Wiley: New York) (1981)
    [123] D Wang, Y L Chang, Q Wang, J Cao, D B Farner, R G Gordon and H Dai, J. Am. Chem. Soc. 126 11602 (2004).
    [124] R Martel, T Schmidt, H R Shea, T Hertel and Ph Avouris, Appl. Phys. Lett. 73, 2447 (1998).
    [125] S Jin, D Whang, M C McAlpine, R S Friedman, Y Wu and C M Lieber, Nano Lett. 4, 915 (2004).
    [126] J H Ahn, H S Kim, K J Lee, S Jeon, S J Kang, Y Sun, R G Nuzzo and J A Rogers, Science 314, 1754 (2006).
    [127] A Javey, S W Nam, R S Friedman, H Yan and C M Lieber, Nano Lett. 7, 773(2007).
    [128] Y Li, J Xiang, F Qian, S Gradečak, Y Wu, H Yan, D A Blom and C M Lieber, Nano Lett. 6, 1468 (2006).
    [129] J Xiang, W Lu, Y Hu, Y Wu, H Yan and C M Lieber, Nature 441, 489 (2006).
    [130] D Hisamoto, W C Lee, J Kedzierski, H Takeuchi, K Asano, C Kuo, E Anderson, T-J King, J Bokor and C Hu, IEEE Trans. Electron Devices 47, 2320 (2000).
    [131] V Schmidt, H Riel, S Senz, S Karg, W Riess and U Gösele, Small 2, 85 (2006).
    [132] J Goldberger, A I Hochbaum, R Fan and P Yang, Nano Letter. 6, 973 (2006).
    [133] K Keem, D Y Jeong, S Kim, M S Lee, In S Yeo, U I Chung and J T Moon, Nano Lett. 6, 1454 (2006).
    [134] Zhang L, Tu R and Dai H, Nano Lett. 6, 2786(2006).
    [135] Y Huang, X Duan, Q Wei and C M Lieber, Science 291, 630 (2001).
    [136] D Whang, S Jin, Y Wu and C M Lieber, Nano Lett. 3, 1255 (2003).
    [137] J Chung, K-H Lee, J Lee, R S Rouff, Langmuir 20, 3011 (2004).
    [138] C S Lao, J Liu, P Gao, L Zhang, D Davidovic, R Tummala and Z L Wang, Nano Lett. 6, 263 (2006).
    [139] G Yu, A Cao and C M Lieber, Nat. Nanotechnol. 2, 372 (2007).
    [140] S Myung, M Lee, G T Kim, J S Ha and S Hong, Adv. Mater. 17, 2361 (2005).
    [141] S Liu, J B-H Tok, J Locklin, Z Bao, Small 2, 1448 (2006).
    [142] Z Fan, J C Ho, Z A Jacobson, R Yerushalm, R L Alley, H Razavi and A Javey, Nano Lett. 8, 20 (2008).
    [143] Y Zhang, A Chang, J Cao, Q Wang, W Kim, Y Li, N Morris, E Yenilmez, J Kong and H. Dai, Appl. Phys. Lett. 79, 3155 (2001).
    [144] B Nikoobakht, C A Michaels, S J Stranick, M D Vaudin, Appl. Phys. Lett. 85, 3244 (2004).
    [145]A Ismach, D Kantorovich, E Joselevich, J. Am. Chem. Soc. 127, 11554 (2005).
    [146] S J Kang, C Kocabas, T Ozel, M Shim, N Pimparkar, M A Alam, S V Rotkin and J A Rogers, Nat. Nanotechnol. 2, 230 (2007).
    [147] S Huang, M Woodson, R Smalley and J Liu, Nano Lett. 4, 1025 (2004).
    [148] A V Ghule, K Ghule, C-Y Chen, W-Y Chen, S-H Tzing, H Chang and Y-C Ling, J. Mass Spectrom. 39, 1202 (2004).
    [149] F H Leiter, H R Alves, A Hofstaetter, D M Hoffman and M K Meyer, Phys. Status Solidi b 226, R4 (2001).
    [150] H-J Egelhaaf and D Oelkrug, J. Cryst. Growth 161, 190 (1996).
    [151] S A Studenikin, N Golego and M Cocivera J. Appl. Phys. 84, 2287 (1998).
    [152] Y Dong, R M Feenstra, D W Greve, J C Moore, M D Sievert and A A Baski, Appl. Phys. Lett. 86, 121914 (2005).
    [153] S Ito, H Fujioka, J Ohta, A Kobayashi, T Honke, H Miki and M Oshima, Thin Solid Films, 457, 118 (2004).
    [154] K Kano and M Akatsuka, Plasma Sources Sci. Technol. 9, 314 (2000).
    [155] S Kosaraju, J A Marino, J A Harvey and C A Wolden, J. Cryst. Growth. 286, 400 (2006).
    [156] V Yu Davydov, A A Klochikhin, V V Emtsev, D A Kurdyukov, S V Ivanov, V A Vekshin, F Bechstedt, J Furthmuller, J Aderhold, J Graul, A V Mudryi, H Harima, A Hashimoto, A Yamamoto and E Haller, Phys. Status Solidi B, 234, 787 (2002).
    [157] E Dimakis, E Iliopoulos, K Tsagaraki, A Adikimenakis and A Georgakilas, Appl. Phys. Lett. 88, 191918 (2006).
    [158] M F Wu, S . Zhou, A Vantomme, Y Huang, H Wang and H Yang, J. Vac. Sci. Technol. A, 24, 275 (2006).
    [159] V Yu Davydov, V V Emtsev, I N Goncharuk, A N Smirnov, V D Petrikov, V V Mamutin, V A Vekshin, S V Ivanov, M B Smirnov and T Inushima, Appl. Phys. Lett. 75, 3297 (1999).
    [160] J S Dyck, K Kim, S Limpijumnong, W R L Lambrecht, K Kash and J C Angus, Solid state Commun. 114, 355 (2000).
    [161] H Richter, Z P Wang and L Ley, Solid Satae Commun. 39, 625 (1981).
    [162] I H Campbell and P M Fauchet, Solid State Commun. 58, 739 (1986).
    [163] H Parala, A Devi, F Hipler, E Maile, A Birkner, H W Becker and R A Fischer, J. Cryst. Growth. 231, 68 (2001).
    [164] J Zhang, L Zhang, X S Penga and X F Wang, J. Mater. Chem. 12, 802 (2002).
    [165] G Cheng, E Stern, D Turner-Evans and M A Reed, Appl. Phys. Lett. 90,253013-1 (2005).
    [166] Z Cai, S Garzon, M V S Chandreshekhar, R A Webb and G Koley, J. Electron Mater. 37, 585 (2008)
    [167] S Luo, W Zhou, Z Zhang, X Dou, L Liu, X Zhao, D Liu, L Song, Y Xiang, J Zhou and S Xie, Chem. Phys. Lett. 411, 361 (2005).
    [168] M S Hu, W M Wang, T T Chen, L S Hong, C W Chen, C C Chen, Y F Chen, K H Chen and L C Chen, Adv. Funct. Mater. 16, 537 (2006).
    [169] Y Hao, G Meng, Z L Wang, C Ye and L. Zhang, Nano Lett. 6, 1650 (2006).
    [170] S Biswas, S Kar, T Ghoshal, V D Ashok, S Chakrabarti and S Chaudhuri, Mater. Res. Bull. 42, 428 (2007).
    [171] P Singh, P Ruterana, M Morales, F Goubilleau, M Wojdak, J F Carlin, M Ilegems and D Chateigner, Superlattices Microstruct. 36, 537 (2004).
    [172] 沈國任, 成功大學化工所碩士論文, 2003.
    [173] W I Park, J S Kim, G-C Yi, M H Bae and H J Lee, App. Phys. Lett. 85, 5052 (2004).
    [174] P-C Chang, Z Fan, C-J Chien, D Stichtenoth, C Ronning and J G Lu, App. Phys. Lett. 89, 133113 (2006).
    [175] JGoldberger, D J Sirbuly, M Law and P Yang P, J. Phys. Chem. B 109, 9 (2005).
    [176] R Seidel, M Liebau, G S Duesberg, F Kreupl, E Unger, A P Graham, W Hoenlein and W Pompe, Nano Lett. 3, 965 (2003).
    [177] D I Suh, S-Y Lee, J-H Hyung, T-H Lim and S-K Lee, J. Phys. Chem. C 112, 1276 (2008).
    [178] S Ju, K Lee, M-H Yoon, A Facchetti, T J Marks and D B Janes, Nanotechnology 18, 155201 (2007).
    [179] J-H Choi, D-Y Khang and J-M Myoung, Solid State Commun. 148, 126 (2008).

    下載圖示 校內:2019-06-29公開
    校外:2019-06-29公開
    QR CODE