| 研究生: |
張文昕 Chang, Wen-Hsin |
|---|---|
| 論文名稱: |
基於渾沌進化演算論之JPEG 2000 小波分解最佳化設計 JPEG 2000 Wavelet Filter Design Framework with Chaos Evolutionary Programming |
| 指導教授: |
郭淑美
Guo, Shu-Mei |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 資訊工程學系 Department of Computer Science and Information Engineering |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 英文 |
| 論文頁數: | 87 |
| 中文關鍵詞: | 小波轉換 、失真壓縮 、資料壓縮 |
| 外文關鍵詞: | Image compression, JPEG 2000, Discrete wavelet transform, Chaos, Evolutionary programming |
| 相關次數: | 點閱:91 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
以小波轉換為基礎的資料壓縮方式為目前越來越熱門的課題,利用離散小波轉換Discrete Wavelet Transform (DWT)為基礎的壓縮技巧如 Embedded Zerotree Wavelet encoder (EZW)、Set Partitioning in Hierarchical (SPIHT),其壓縮效率皆能在高壓縮率的狀況下超越原本以離散小波轉換Discrete Cosine Transform (DCT)為主的的壓縮技術。
小波轉換的資料壓縮標準中,JPEG 2000 為目前最先進的靜態影像壓縮技術,J2K使用Daubenchies 9/7作為失真壓縮的小波轉換標準。小波轉換的種類相當繁多,研究指出,各種不同的小波轉換在每張影像有不同的壓縮效果,換言之,針對每張影像可以嘗試找出其最適合的小波轉換。
本篇論文提供了一個最佳化的機制與構想,可以提升JPEG 2000與其他小波轉換的資料壓縮標準的影像品質,只要稍微修改壓縮封包的檔頭,未來可以在各種標準下實現更多不同需求、針對不同長度的小波分解做最佳化。研究結果也指出CEP可以有效的提升每個壓縮率下的影像品質,CEP最佳化的過程為了尋找最適合的小波分解係數需要花點時間,但是每一張影像只需要做一次便可隨時重現研究成果,解碼端使用者若接到CEP最佳化過的影像格式,即可迅速、確實的獲得影像品質的提升。
JPEG 2000 (J2K) is an international standard for still image compression, which is based on wavelet transformation and adopts the Daubenchies 9/7 filter for lossy compression. Considering that a wavelet filter might be suitable for one image but not for the other in regard to reconstruction quality, in this thesis, we propose a novel filter design framework based on the Daubenchies 9/7 filter, which employs chaos evolution programming (CEP) to optimize the wavelet filter for each specific image. The customized filter design is ready to incorporate into the J2K codec since the filter coefficients can be constructed with only one single parameter, which can be easily packaged into the J2K header. Experimental results show that CEP-trained filters achieve higher image quality.
[1] M. Unser and T. Blu, “Mathematical properties of the JPEG2000 wavelet filters,” Image Processing,IEEE Trans., vol. 12, pp. 1080- 1090, Sept. 2003.
[2] Adams, M.D, and F. Kossentni, “Reversible integer-to-integer wavelet transforms for image compression: performance evaluation and analysis,” Image Processing, IEEE Trans, vol. 9, pp. 1010-1024, Jun 2000.
[3] H. Li, G. Liu, and Z. Zhang, “Optimization of integer wavelet transforms based on difference correlation structures,” Image Processing, IEEE Trans, vol. 14, pp. 1831- 1847, Nov. 2005.
[4] Tay and D.B.H, “Rationalizing the coefficients of popular biorthogonal wavelet filters,” IEEE Trans. Circuits and Systems for Video Technology, vol. 10, pp. 998-1005, Sep 2000.
[5] T. Acharya and P.-S. Tsai, JPEG2000 Standard for Image Compression: Concepts, Algorithms and VLSI Architectures: Wiley-Interscience, 2004.
[6] http://www.amara.com/IEEEwave/IEEEwavelet.html.
[7] M. Vetterli and C. Herley, “Wavelets and filter banks: theory and design,” IEEE Transactions on Signal Processing, vol. 40, pp. 2207-2232, 1992.
[8] W. Press et al., Numerical Recipes in Fortran. New York: Cambridge University Press, 1992.
[9] V. Wickerhauser, Adapted Wavelet Analysis from Theory to Software. Boston: AK Peters, 1994.
[10] M. A. Cody, “The wavelet packet transform,” Dr. Dobb's Journal, vol. 19, pp. 44-46, 50-54, Apr. 1994.
[11] K. Sayood, Introduction to Data compression: Morgan Kaufmann, 2000.
[12] A. Abbate, C. M. DeCusatis, and P. K. Das, Wavelets and subbands :fundamentals and applications. Boston: Birkhäuser, 2002.
[13] C. S. Burrus, R. A. Gopinath, and H. Guo, Introduction to Wavelets and Wavelet Transforms. Englewood Cliffs: NJ: Prentice Hall, 1998.
[14] http://www.ece.uvic.ca/~mdadams/jasper/.
[15] http://jj2000.epfl.ch/jj_whitepaper/index.html.
[16] I. Daubechies, W. Sweldens, and c. J. J. Benedetto, “Factoring Wavelet Transforms into Lifting Steps,” Journal of Fourier Analysis and Applications, vol. 4, 1998.
[17] D. Taubman, “High performance scalable image compression with EBCOT,” IEEE Trans. Image Processing, vol. 9, pp. 1158–1170, July 2000.
[18] http://research.microsoft.com/~jinl/paper_2002/msri_jpeg.htm.
[19] J. Li and S. Lei, “An embedded still image coder with rate-distortion optimization,” Image Processing,IEEE Tran., vol. 8, pp. 913-924, Jul. 1999.
[20] “Lossy/Lossless Coding of Bi-level Images,” ISO/IEC 14492-1 2000.
[21] D. Huffman, “A method for the construction of minimum redundancy codes,” Proc. IRE, pp. 1098-1101, 1952.
[22] D. Taubman and A. Zalkor, “Multirate 3-D subband coding of video,” IEEE Trans. Image Processing, vol. 3, pp. 572-578, Sept. 1994.
[23] C. Christopoulos, J. Askelof, and M. Larsson, “Efficient methods for encoding regions of interest in the upcoming JPEG2000 still image coding standard,” IEEE Signal Processing Letters, September 2000.
[24] B. Li and W. S. Jiang, “Optimizing complex functions by chaos search,” Cybernetics and Systems, vol. 29, pp. 409-419, June 1998.
[25] D. Z. C. X. F. Yan and S. X. Hu., “Chaos-genetic algorithms for optimizing the operating conditions based on RBF-PLS model,” Computers and Chemical Engineering , vol. 27, pp. 1393-1404, October 2003.
[26] M. C. R. Caponetto, D. O. L. Fortuna, and L. Occhipinti, “Synthesis of a programmable chaos generator, based on CNN architectures, with applications in chaotic communication,” Proc.CNNA ’98, London, U.K, pp. 124-129, April. 14–17, 1998.
[27] M. Bucolo, R. Caponetto, L. Fortuna, and M. G. Xibilia, “How the Chua circuit allows to model population dynamics,” Proc.NOLTA ’98, La Regent, Crans-Montana, Switzerland, Sept 14–17, 1998.
[28] H. Nozawa, “A neural network model as globally coupled map and application based on chaos,” Chaos, 2, pp. 377–386, 1992.
[29] L. Chen and K. Aihara, “Global searching ability of chaotic neural networks,” IEEE Trans. Circuit Syst., pp. 974–993, Aug 1999.
[30] L. Wang and K. Smith, “On chaotic simulated annealing,” IEEE Trans. Neural Networks, vol. 9, pp. 716–718, July 1998.
[31] P. Arena, R. Caponetto, A. R. L. Fortuna, and M. L. Rosa., “Self organization in non recurrent complex system,” Int. J. Bifurcation and Chaos, vol. 10, pp. 1115–1125, 2000.
[32] J. Determan and J. A. Foster, “Using chaos in genetic algorithm,” Proceedings of the 1999 Congress on Evolutionary Computation. Piscataway, NJ: IEEE, pp. Press, 3: 2094–2101, 1999.
[33] G. Manganaro and J. P. d. Gyvez, “DNA computing based on chaos,” IEEE International Conference on Evolutionary Computation. Piscataway, pp. 255–260, 1997.
[34] J. H. Halton, “On the efficiency of certain quasi-random sequences of points in evaluating multidimensional integrals,” Numerische Mathematik 2, pp. 84–90, 1996.
[35] J. C. Van, “Verteilungsfunktionen,” Proc. Kon Akad. Wet., Amstrerdam 38, pp. 1058–1066, 1935.
[36] http://sipi.usc.edu/services/database.
[37] S atyabrata Rout, “Orthogonal vs. niorthogonal wavelets for image compression,” Blacksburg, VirginiaAugust, vol. 21, 2003.