研究生: |
張如瑩 Chang, Ru-Yng |
---|---|
論文名稱: |
漢語及英語非母語學習者的錯誤句診斷與校正之研究 A Study on Error Sentence Diagnosis and Correction for Chinese and English Non-Native Learners |
指導教授: |
吳宗憲
Wu, Chung-Hsien |
學位類別: |
博士 Doctor |
系所名稱: |
電機資訊學院 - 資訊工程學系 Department of Computer Science and Information Engineering |
論文出版年: | 2012 |
畢業學年度: | 100 |
語文別: | 英文 |
論文頁數: | 122 |
中文關鍵詞: | 自然語言處理 、電腦輔助語言學習 、錯誤句診斷與校正 、漢語及英語非母語學習者 |
外文關鍵詞: | Natural Language Processing, Computer Assisted Language Learning, Error Sentence Diagnosis and Correction, Chinese and English Non-Native Learners |
相關次數: | 點閱:98 下載:2 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
為數眾多的漢語及英語非母語學習者常無法精準地控制句子中的句法和語意,然而,現今電腦輔助語言系統極少處理漢語學習者的句子錯誤,或者忽略某些常見的英語錯誤,且無法針對錯誤提供更進一步的描述,以致於學習者無法從錯誤中學習改進。藉此,本研究提出一創新的方法針對漢語學習者的錯誤句進行錯誤診斷,並針對英語學習者的錯誤句進行診斷和校正。
針對錯誤診斷,本論文提出懲罰式機率第一階歸納學習(penalized probabilistic First-Order Inductive Learning, pFOIL)演算法。pFOIL演算法整合歸納邏輯程式(Inductive Logic Programming, ILP),第一階歸納學習(First-Order Inductive Learning, FOIL)以及懲罰式對數概似函數(Penalized Log-likelihood Function),利用成堆的背景知識(Background Knowledge)表達那些可能是不確定、不完美甚至互相衝突的正確句與錯誤句的句子特色,進而推導產生出假設(Hypothesis),形成漢語錯誤診斷模組,假設是由一堆類似人類可解讀的規則所組成,該規則提供了錯誤發生原因、錯誤發生的位置和錯誤形成的原因,而此規則除了可幫助學習者從錯誤中學習,還提供了重要線索協助進一步的錯誤句校正。針對漢語錯誤診斷,關係樣式背景知識(Relation Pattern Background Knowledge)和量化t分數背景知識(Quantized t-score Background Knowledge)被提出用於描述漢語句子的特色,應用在pFOIL 演算法中。關係樣式背景知識保留漢語句子中的形態、句法和語意資訊,由一或兩種形態、句法和語意屬性組合而成,而大多數的關係樣式背景知識是由相鄰的同種或兩種屬性所構成。量化t分數背景知識是從正確句計算各種成對屬性的t分數,再將量化後的t分數用來描述錯誤和正確的漢語句子。本論文同時提出解構式測試機制(Decomposition-based Diagnosis Mechanism)以便於處理一個錯誤句可能包含多個錯誤的情況,在進行錯誤診斷時,依序以各種可能造成該種錯誤類別的背景知識群組送入錯誤診斷模組中進行判別,直到所有錯誤類別相關的背景知識都被檢測後才結束該流程。
本研究進一步根據英語特性提出階層式架構進行英語錯誤句診斷和校正。在階層式架構中,英語錯誤診斷模組是由片語、子句以及句子各層次pFOIL 演算法各別推導出不同的假設所構成,接著,錯誤句校正則由多維度語言模組(Multidimensional Language Model)所負責。其中,為了便於各層次的pFOIL演算法能推導出適當的英語錯誤診斷模組,多類別背景知識(Multi-type Background Knowledge)和量化背景知識(Quantized Background Knowledge)被提出來用於表達英語句特色。由於英語句是以句法架構為基礎去延展句子,不同於漢語以語意或語用為基礎進行句子延伸,因此,多類別背景知識是以英語句法間的相依性和結構為基礎將英語句中的各類形態、句法及語意屬性加以組合。量化背景知識則是將從英語正確句中所計算出的t分數和語言模組機率加以量化,再將其量化值進一步用於描述所有英語正確和錯誤句。解構式測試機制同樣用於英語錯誤診斷,以便於抓取片語、子句甚至是句子中可能存在的多個錯誤。在進行英語錯誤句校正時,多維度語言模組不同於傳統由詞形為基本單位的語言模組,改以參考形態、句法和語意這些多維度值所構成的狀態(State)為語言模組的基本單元,並以bi-state計算語言模組機率值,參考pFOIL演算法診斷出的線索找出需要調整的狀態和相對應的值,進而產生出各種可能的英語錯誤句校正結果。
系統評估方面,《漢語病句辨析九百例》和Dr.Eye語料庫用於評估漢語錯誤句分類的效能,《中國學習者英語語料庫》用於英語錯誤句分類和校正的效能評估。三種常見的分類器:最大熵、C4.5和貝氏分類器為錯誤分類的基底比較系統。評估層面包括:pFOIL演算中各參數的影響,針對漢語和英語個別所提出的背景知識其效能和效益,和其他基底系統的比較,在各種錯誤類別的表現,以及以量化和質化方式評估英語錯誤句校正的表現。實驗結果顯示所提出的背景知識能有效減少模組建立時間並增進診斷效果,以pFOIL演算法為基礎的方法不論針對漢語或英語在各種錯誤類別診斷上都有相當穩定且精準的結果,多維度語言模組亦產生良好的英語錯誤校正結果。
Numerous Chinese and English non-native learners often have difficulty formulating correct syntactic and semantic structures themselves. Most of current computer-assisted language learning systems do not consider sentence errors by learners of Chinese as second language (CSL), ignore some common sentence errors by learners of English as second language (ESL), and cannot provide error description to help learners learn from errors. This dissertation focuses on the analysis of sentential, multiple grammatical, and local semantic errors as well as proposes a novel approach to error diagnosis of Chinese sentences and error diagnosis and correction of English sentences for CSL and ESL learners.
A penalized probabilistic First-Order Inductive Learning (pFOIL) algorithm is proposed for error diagnosis of Chinese and English sentences. The pFOIL algorithm integrates inductive logic programming (ILP), First-Order Inductive Learning (FOIL) and a penalized log-likelihood function for error diagnosis. This algorithm takes into account the uncertain, imperfect and conflicting characteristics of sentences to infer error types and generate human-interpretable rules to describe errors and further error correction. For Chinese error diagnosis, relation pattern background knowledge and quantized t-score background knowledge are proposed to characterize a Chinese sentence and then used for likelihood estimation in the pFOIL algorithm. The relation pattern background knowledge captures the morphological, syntactic and semantic attributes among the words in a Chinese sentence. One or two kinds of the extracted attributes are then integrated into a pattern to characterize a Chinese sentence. Most of relation pattern background knowledge is composed of two continuous attributes. The quantized t-score values are used to characterize various attributes of a Chinese sentence for quantized t-score background knowledge representation. Afterwards, a decomposition-based testing mechanism which decomposes a sentence into background knowledge set needed for each error type is proposed to infer all potential error types and causes of the sentence. With the pFOIL method, not only the error types but also the error causes and positions can be provided for non-native learners.
This dissertation further presents a hierarchical framework consisting of phrase, clause, and sentence levels for diagnosis and correction of English sentences for ESL learners. In the hierarchical framework, pFOIL algorithm is employed for English error diagnosis and then a multidimensional language model is proposed for English error correction. In English error diagnosis, the pFOIL approach is proposed to characterize a sentence using multi-type background knowledge which considers syntactic dependents and then captures the morphological, syntactic and semantic information among words, and quantized background knowledge with discrete values of multi-type information. A decomposition-based diagnosis mechanism is also employed to infer all potential error types and causes of the ESL sentence error. In English error correction, the multidimensional language model measuring the word associations in the diagnosed sentence considering the morphological, syntactic, and semantic information is used to correct the sentences.
The sentences from “Error Analysis of 900 Sample Sentences” and Dr.Eye corpus are selected for CSL error diagnosis performance evaluation, while Chinese learner English corpus (CLEC) is used for ESL error diagnosis and correction performance evaluation. Experimental results reveal that the pFOIL method outperforms the C4.5, maximum entropy and Naive Bayes classifiers in Chinese error classification. The evaluation on different ESL error classification experiments reveals that the proposed hierarchical pFOIL method outperforms the C4.5, Maximum Entropy and Naïve Bayes classifiers. The results also demonstrate that this multidimensional language model adopting morphological, syntactic, and semantic information can achieve a promising English correction performance.
[1]. Academia Sinica. 2005. The Academia Sinica Bilingual Ontological Database, The Association for Computational Linguistics and Chinese Language Processing (ACLCLP), available at http://www.aclclp.org.tw/use_bd_c.php
[2]. Al-Mekhlafi, K. Hu, X., and Zheng, Z. 2009. An Approach to Context-aware Mobile Chinese Language Learning for Foreign Students. In Proceedings of the Eighth International Conference on Mobile Business, Dalian, China, 340-346.
[3]. Benson, B. 1980. A Qualitative Analysis of Language Structures in Compositions Written by First and Second Language Learners. Dissertation Abstracts International, 41 (5), 1984A.
[4]. Benson, B., Deming, M., Denzer, D., and Valeri-Gold, M. 1992. A Combined Basic Writing/English as a Second Language Class: Melting Pot or Mishmash? Journal of Basic Writing, 11 (1), 58-59.
[5]. Brockett, C., Dolan, W., and Gamon, B. M. 2006. Correcting ESL Errors Using Phrasal SMT Techniques. In Proceedings of the 21st International Conference on Computational Linguistics and 44th ACL (COLING -ACL2006), Sydney, Australia, 249 - 256.
[6]. Catt, M. and Hirst, G. 1990. An Intelligent CALI System Grammatical Error Diagnosis, CALL, 3, 3-26.
[7]. Charniak, E. 2000. Charniak Parser, University of Brown, available at http://www.cs.brown.edu/people/ec/.
[8]. Chang, C. C. and Lee, Y. C. 2006. Implementation Problems and Instructional Strategies of Web-Based Composition Learning Community Website. Global Chinese Journal for Computers in Education, 4 (1, 2).
[9]. Chang, J. 2004. Chinese Morphology in English-Chinese Contrast. XinZhou Teachers University, XinZhou, China.
[10]. Chang, P. C., Tseng, H. S., Jurafsky, D., and Manning, C. D. 2009. Stanford Chinese Dependency Parser, The Stanford Natural Language Processing Group, available at http://nlp.stanford.edu/software/lex-parser.shtml
[11]. Chang, P. C., Tseng, H. S., Jurafsky, D., and Manning, C. D. 2009. Discriminative Reordering with Chinese Grammatical Relations Features. In Proceedings of the Third Workshop on Syntax and Structure in Statistical Translation, Boulder, Colorado, 51-59.
[12]. Chang, R. Y. and Huang, C. R. 2004. The Academia Sinica Bilingual Ontological Wordnet (Sinica BOW) Combining WordNet, Ontology, and Domain Information. In Proceedings of the Conference on Computational Linguistics and Speech Processing (ROCLING XVI), Greenbay, Taipei, 285-294.
[13]. Chang, R. Y., Wu, C. H., and Prasetyo, P. K. 2012. Error Diagnosis Using Penalized Probabilistic FOIL for Chinese as a Second Language Learner. In Proceedings of the 7th International Symposium on Chinese Spoken Language Processing (ISCSLP 2010), Tainan, Taiwan, 401-406.
[14]. Chang, R. Y., Wu, C. H., and Prasetyo, P. K. 2012. Error Diagnosis of Chinese Sentences using Inductive Learning Algorithm and Decomposition-based Testing Mechanism. ACM Transactions on Asian Language Information Processing, 11(1), Article 3, 24 pages.
[15]. Chang, R. Y., Wu, C. H., and Prasetyo, P. K. 2012. ESL Error Classification in a CALL System based on Multi-type Information Features. In Proceedings of the 15th International CALL Research Conference, Taichung, Taiwan, 93-98.
[16]. Chen, K. J. 1999. Lexical Analysis for Chinese-Difficulties and Possible Solutions. Journal of Chinese Institute of Engineers, 22(5), 561-571.
[17]. Chen, K. J. 2000. CKIP Chinese Word Segmentation System, Chinese Knowledge and Information Processing Group, available at http://otl.sinica.edu.tw/index.php?t=9&group_id=25&article_id=408.
[18]. Chen, K. J. and Liu, S. H. 1992. Word Identification for Mandarin Chinese Sentences. In Proceedings of the International Conference on Computational Linguistics, Nantes, France, 101-107.
[19]. Chen, K. J. and Bai, M. H. 1998. Unknown Word Detection for Chinese by a Corpus-based Learning Method. Computational Linguistics and Chinese Language Processing, 3(1), 27-44.
[20]. Chen, K. J. and Ma, W. Y. 2002. Unknown Word Extraction for Chinese Documents. In Proceedings of the International Conference on Computational Linguistics, Taipei, Taiwan, 169-175.
[21]. Chen, H. Y. and Liu, K. Y. 2008. Web-based Synchronized Multimedia Lecture System Design for Teaching/Learning Chinese as Second Language. Journal Computers & Education, 50(3), 693-702.
[22]. Chen, H., Branavan, S. R. K., Barzilay, R., and Karger, D. R. 2009. Content Modeling using Latent Permutations. Journal of Artificial Intelligence Research, 36, 129-163.
[23]. Chen, H. R., Lin, Y. S., Huang, S. Y., and Shiau, S. Y. 2009. Content Design for Situated Game-Based Learning: An Exploration of Chinese Language Poetry Learning. In Proceedings of the International Conference on Computational Intelligence and Software Engineering 2009(CiSE2009), Wuhan, China, 1-4.
[24]. Chen, L. and Tokuda, N. 2003. A New Template-Template-Enhanced ICALL System for a Second Language Composition Course. CALICO Journal, 20(3), 561-578.
[25]. Cheng, C. C. 1973. Computer-Based Chinese Teaching Program at Illinois. Journal of the Chinese Language Teachers Association, 8, 75-79.
[26]. Cheng, M. 1997. Error Analysis of 900 Sample Sentences-for Chinese Learner from English Speaking Countries (Chinese- English): Beijing, CN: Sinolingua.
[27]. Chodorow, M., Tetreault, J. R. and Han, N. R. 2007. Detection of Grammatical Errors Involving Prepositions. In Proceedings of the Fourth ACL-SIGSEM Workshop on Prepositions, Prague, Czech Republic, 25-30.
[28]. CKIP. 1993. The Analysis of Chinese Category. Technical Report 93-05, Chinese Knowledge and Information Processing Group, Academia Sinica.
[29]. CKIP. 1998. The Content and Introduction to Academia Sinica Balanced Corpus of Modern Chinese. Technical Report 95-02/98-04, Chinese Knowledge and Information Processing Group, Academia Sinica.
[30]. CKIP. 2004. Chinese Knowledge and Information Processing Group. Retrieved February 1, 2011, from http://ckip.iis.sinica.edu.tw/CKIP/
[31]. Federico, M. and Bertoldi, N. 2006. How Many Bits Are Needed to Store Probabilities for Phrase-based Translation. In Proceedings of the Workshop on Statistical Machine Translation, New York, USA, 94-101.
[32]. Felice, R. D. and Pulman, S. G. 2007. Automatically Acquiring Models of Preposition Use. In Proceedings of the Fourth ACL-SIGSEM Workshop on Prepositions, Prague, Czech Republic, 45-50.
[33]. Felice, R. D. and Pulman, S. G. 2008. A Classifier-based Approach to Preposition and Determiner Error Correction in L2 English. In Proceedings of the 22nd International Conference on Computational Linguistics (COLING2008), Manchester, UK, 169-176.
[34]. Fotos, S. and Browne, C. M. 2004. New Perspectives on CALL for Second Language Classrooms. Mahwah, New Jersey: Lawrence Erlbaum Associates.
[35]. Graff, D. and Cieri, C. 2003. English Gigaword, Linguistic Data Consortium, Philadelphia, available at http://www.ldc.upenn.edu/Catalog/CatalogEntry.jsp?catalogId=LDC2003T05.
[36]. Gropu, M. M. 2012. Top Ten Internet Languages- World Internet Statistics. Retrieved April 20, 2012, from http://www.internetworldstats.com/stats7.htm
[37]. Gui, S. and Yang, H. 2003. Chinese Learner English Corpus. Shanghai, China: Shanghai Foreign Language Education Press.
[38]. Han, N. R. Chodorow, M. and Leacock, C. 2006. Detecting Errors in English Article Usage by Non-native Speakers. Natural Language Engineering, 12(2), 115-129.
[39]. Heaneey, D. and Daly, C. 2004. Mass Production of Individual Feedback. ACM SIGCSE Bulletin, 36(3), 117-121.
[40]. Heift, T. and Schulze, M. 2003. Error Diagnosis and Error Correction in CALL. CALICO Journal, 20 (3), 433-436.
[41]. Howard, J. 2002. A Student Handbook for Chinese Function Words. Hong Kong, CN: The Chinese University of Hong Kong.
[42]. Huang, C. R., Chang, R. Y., and Tsai, B. S. 2003. Chinese Language Education and the Developing Semantic Web: An Introduction to Chinese-English Bilingual Ontology Interface. In Proceedings of the Third International Conference of Internet Chinese Education, Taipei, Taiwan, 24-26.
[43]. Huang, C. R., Chang, R. Y., and Lee, S. B. 2004. Sinica BOW (Bilingual Ontological Wordnet): Integration of Bilingual WordNet and SUMO. In Proceedings of the 4th International Conference on Language Resources and Evaluation (LREC2004), Lisbon, Portugal, 26-28.
[44]. Huang, C. R., Chen, K. J., Chen, F. Y., Wei, W. J., and Chang, L. 1997. Design Criteria and Content of 'Segmentation Standard for Chinese Information Processing'. Applied Linguistics. 1, 92-100.
[45]. Huang, C. R, Lu, C. J. and Chang, R. Y. 2004. A Linguistic KnowledgeNet and Future E-learning: the Construction of “Adventures in Wen-Land”. In F. L. Lo (Ed.), Language, Literature, and Technology (487-536), Xinzhu, Taiwan: Tsing Hua University Publisher.
[46]. Jiang, W. 2009. Acquisition of Word Order in Chinese as a Foreign Language. Berlin, DE: Mouton de Gruyter.
[47]. Jurafsky, D. and Martin. J. H. 2008. Speech and Language Processing: An Introduction to Natural Language Processing, Computational Linguistics, and Speech Recognition. New Jersey, USA: Prentice Hall.
[48]. Kotani, K., Yoshimi, T., Kutsumi, T., and Sata, I. 2009. Automatic Classification of Language Learner Sentences into Native-like or Non-Native-like Based on Word Alignment Distribution. In W. Kouwenhoven (Ed.), Advances in Technology, Education and Development(451-460), InTech.
[49]. Krippendorff, K. H. 1980. Content Analysis: An Introduction to Its Methodology. Thousand Oak, CA: Sage Publications.
[50]. Landwehr, N., Kersting, K. and Raedt. L. D. 2007. Integrating Naïve Bayes and FOIL. Journal of Machine Learning Research, 8, 481-507.
[51]. Leacock, C., Gamon, M., and Brockett, C. 2009. User Input and Interactions on Microsoft Research ESL Assistant. In Proceedings of the Fourth Workshop on Innovative Use of NLP for Building Educational Applications, Boulder, Colorado, USA, 73-81.
[52]. Lee, I. 2003. L2 Writing Teachers’ Perspectives, Practices and Problems Regarding Error Feedback. Assessing Writing, 8(3), 216-237.
[53]. Lee, J. and Seneff, S. 2008. Correcting Misuse of Verb Forms. In Proceedings of the 46th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies (ACL-08: HLT), Columbus, Ohio, USA, 174-182.
[54]. Lee, J., Zhoz, M., and Liu, X. H. 2007. Detection of Non-Native Speaker Sentences using Machine-translated Training Data. In Proceedings of the Conference of the North American Chapter of the Association for Computational Linguistics(NAACL HLT 2007). Stroudsburg, PA, USA, 93-96.
[55]. Levenshtein, V. I. 1965. Binary Codes Capable of Correcting Deletions, Insertions and Reversals. Doklady Akademii Nauk SSSR, 163(4), 845-848.
[56]. Li, Q., Lau, R. W. H., McLeod, D. and Liu, J. 2009. Guest Editors’ Introduction: Knowledge and Data Engineering for E-Learning. IEEE Transactions on Knowledge and Data Engineering, 21 (6), 756-758.
[57]. Li, C. N. and Thompson, S. A. 1981. Mandarin Chinese: a Functional Reference Grammar. Berkeley, USA: University of California Press.
[58]. Lin, D. 1998. Minipar, University of Alberta, available at http://www.cs.ualberta.ca/~lindek/minipar.htm.
[59]. Lin, Y. J., Huang, F. L., and Yu, M. S. 2002. A Chinese Spelling Error Correction System. In Proceedings of the Seventh Conference on Artificial Intelligence and Applications, Taichung, Taiwan, 207-212
[60]. Liu, C. L., Tien, K. W., Lai, M. H., Chuang, Y. H., and Wu, S. H. 2009. Phonological and Logographic Influences on Errors in Written Chinese Words. In Proceedings of the 7th Workshop on Asian Language Resources, Singapore, 84-91
[61]. Liu, C. L., Tien, K. W., Lai, M. H., Chuang, Y. H., and Wu, S. H. 2009. Capturing Errors in Written Chinese Words. In Proceedings of the ACL-IJCNLP 2009, Singapore, 25-28.
[62]. Lo, F. J. and Chang, R. Y. 2000. The Popular Songs in Tang and Sung Dynasty --- Multi-Guiding, Multi-Functional, and Multi-Media Chinese Classic Poetry Learning System. In Proceedings of the 4th Global Conference on Computers in Education (GCCCE2000), Singapore, 649-651.
[63]. Ma, W. Y., and Chen, K. J. 2003. Introduction to CKIP Chinese Word Segmentation System for the First International Chinese Word Segmentation Bakeoff. In Proceedings of the Second SIGHAN Workshop on Chinese Language Processing, Sapporo, Japan, 168-171.
[64]. Ma, W. Y., and Chen, K. J. 2005. Design of CKIP Chinese Word Segmentation System. Chinese and Oriental Languages Information Processing Society, 14(3), 235-249.
[65]. Manning, C. and Schutze, H. 1999. Foundation of Statistical Natural Language Processing. Cambridge, MA, USA: MIT Press.
[66]. McCallum, A. 2002. MALLET: A Machine Learning for Language Toolkit, University of Massachusetts Amherst, available at http://mallet.cs.umass.edu/.
[67]. Miller, G. A. 2009. WordNet: A Lexical Database for English, Princeton University, available at http://wordnet.princeton.edu/.
[68]. Muggleton, S. H. 1991. Inductive Logic Programming. New Generation Computing, 8, 295-318.
[69]. Muggleton, S. H. and De Raedt, L. 1994. Inductive Logic Programming: Theory and Methods. Journal of Logic Programming, 19(20), 629-679.
[70]. Muggleton, S. H. 1999. Inductive Logic Programming: Issues, Results and the Challenge of Learning Language in Logic. Artificial Intelligence, 114(1-2), 283-296.
[71]. Navigli, R. and Lapata, M. 2010. An Experimental Study of Graph Connectivity for Unsupervised Word Sense Disambiguation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 32(4), 678-692.
[72]. Nienhuys-Cheng, S.-H. and de Wolf, R. 1997. Foundations of Inductive Logic Programming. Springer.
[73]. Nigamy, K., Laerty, J., and McCallum, A. 1999. Using Maximum Entropy for Text Classification. In Proceedings of the IJCAI’99 Workshop on Machine Learning for Information Filtering, Stockholm, Sweden, 61-67.
[74]. Niles, I. and Pease, A. 2003. Linking Lexicons and Ontologies: Mapping WordNet to the Suggested Upper Merged Ontology. In Proceedings of the 2003 International Conference on Information and Knowledge Engineering (IKE2003), Las Vegas, Nevada, USA, 412-416.
[75]. Odlin, T. 1989. Language Transfer: Cross-Linguistic Influence in Language Learning. Cambridge, UK: Cambridge University Press.
[76]. Packard, J. L. 2000. The Morphology of Chinese: a Linguistic and Cognitive Approach. Cambridge, UK: Cambridge University Press.
[77]. Paschke, A. and Schroder, M. 2007. Inductive Logic Programming for Bioinformatics in Prova. In Proceedings of the 2nd Workshop on Data Mining in Bioinformatics (DMB 2007) at VLDB'07, Vienna, Austria.
[78]. Prasetyo, P. K. 2008. Hierarchical Penalized Probabilistic FOIL and Multidimensional Language Model for ESL Error Classification and Correction. National Cheng Kung University, Tainan, Taiwan.
[79]. Qiu, Z. and Yang, L. 2001. Apparatus and Methods for Chinese Error Check by Means of Dynamic Programming and Weighted Classes., U.S. Patent No. 6173252. Armonk, NY, USA: International Business Machines Corp.
[80]. Quinlan, J. R. 1990. Learning Logical Definitions from Relations. Machine Learning, 5, 239-266.
[81]. Quinlan, J. R. 1993. C4.5: Programs for Machine Learning. Sydney, AU: Morgan Kaufmann Publishers.
[82]. Raedt, L. D. 2008. Logical and Relational Learning. Springer.
[83]. Raedt, L.D. and Kersting, K. 2004. Probabilistic Inductive Logic Programming. In Proceedings of the Fifteenth International Conference on Algorithmic Learning Theory (ALT2004), Padova, Italy, 19-36.
[84]. Rahman, A. and Ng, V. 2011. Narrowing the Modeling Gap: a Cluster-Ranking Approach to Coreference Resolution. Journal of Artificial Intelligence Research, 40, 469-521.
[85]. Richards, J. C., Platt, J., and Platt, H. 2002. Longman Dictionary of Language Teaching and Applied Linguistics. Addison Wesley Publishing Company, Massachusetts.
[86]. Ruggieri, S. 2002. Efficient C4.5. IEEE Transactions on Knowledge and Data Engineering, 14(2), 438-444.
[87]. Sheia, C. and Hsieh, H. P. 2011. Linkit: a CALL System for Learning Chinese Characters, Words, and Phrases. Computer Assisted Language Learning, 1-12, iFirst Article
[88]. Silva, T. 1990. A Comparative Study of the Composing of Selected ESL and Native English Speaking Freshman Writers. Dissertation Abstracts International, 51(10), 3397A.
[89]. Silva, T. 1993. Toward an Understanding of the Distinct Nature of L2 Writing: The ESL Research and its Implications. TESOL Quarterly, 27(4), 657-677.
[90]. Stubbs, M. 1995. Collocations and Semantic Profiles: On the Cause of the Trouble with Quantitative Studies. Functions of Language, 2(1), 23–55.
[91]. Sun, G., Liu, X., Cong, G., Zhou, M., Xiong, Z., Lee, J., and Lin, C. Y. 2007. Detecting Erroneous Sentences Using Automatically Mined Sequential Patterns. In Proceedings of the 45th Annual Meeting of the Association for Computational Linguistics (ACL2007), Prague, Czech Republic, 81-88.
[92]. Teknowledge and Articulate Software. 2002. The Mappings from SUMO to WordNet, GNU General Public License, available at http://www.gnu.org/copyleft/gpl.html
[93]. Tetreault, J., Foster, J., and Chodorow, M. 2010. Using Parse Features for Preposition Selection and Error Detection. In Proceedings of the 48th Annual Meeting of the Association for Computational Linguistics (ACL2010), Uppsala, Sweden, 353-358.
[94]. Tsai, Y. F. and Chen, K. J. 2003. Context-Rule Model for POS Tagging. In Proceedings of 17th Pacific Asia Conference on Language, Information and Computation, Singapore, 146-151.
[95]. Tsatsaronis, G., Varlamis, I. and Vazirgiannis, M. 2010. Text Relatedness based on a Word Thesaurus. Journal of Artificial Intelligence Research, 37, 1-39.
[96]. Wikipedia, 2012. Chinese as a Second Language. Retrieved April 20, 2012, from http://en.wikipedia.org/wiki/ Chinese_as_a_second_language
[97]. Wikipedia, 2012. English Language. Retrieved April 20, 2012, from http://en.wikipedia.org/wiki/English_language.
[98]. Wikipedia, 2012. Mandarin Chinese. Retrieved April 20, 2012, from http://en.wikipedia.org/wiki/Mandarin_Chinese
[99]. Wu, C. H., Chang, R. Y., and Prasetyo, P. K. 2012. Relation Pattern and T-Score Features for CSL Error Sentence Classification. In Proceedings of the 15th International CALL Research Conference, Taichung, Taiwan, 661-664.
[100]. Wu, C. H., Liu, C. H., Harris, M., and Yu, L. C. 2010. Sentence Correction Incorporating Relative Position and Parse Template Language Models. IEEE Transactions on Audio, Speech, and Language Processing, 18(6), 1170-1181.
[101]. Yao, T. C. 1996. A Review of Some Computer-Assisted Language Learning (CALL) Software for Chinese. In McGinnis, S.(Ed.) Chinese Pedagogy: An Emerging Field, Chinese Language Teachers Association Monograph #2. Foreign Language Publications, Columbus, Ohio.
[102]. Zi, X., Liu, Z., Yuan, Z. Xie, M., and Huang, Y. 2009. A Chinese E-learning Network Platform Based on Web2.0. In Proceedings of the International Conference on Information Management, Innovation Management and Industrial Engineering, Xian, China, 3, 522-525.