簡易檢索 / 詳目顯示

研究生: 呂明憲
Lyu, Ming-Sian
論文名稱: ACF非線性材料特性於金凸塊壓合製程中力學分析
ACF Nonlinear Material Properties in the Mechanical Analysis of Au Bump Bonding Process
指導教授: 李超飛
Lee, Chau-Fei
學位類別: 碩士
Master
系所名稱: 工學院 - 工程科學系
Department of Engineering Science
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 107
中文關鍵詞: 波松比效應異向性導電膠
外文關鍵詞: Anisotropic Conductive Film, Poisson ratio effect
相關次數: 點閱:202下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本文將ACF非線性材料特性於金凸塊製程中的力學分析過程分為三個步驟:(1)進行壓合,本過程之力學分析視樹脂黏著劑為流體狀態不承受壓合力,全部壓合負載由其內部以Mooney-Rivlin橡膠雙係數超彈性材料模式的導電粒子承受,(2)加入樹脂黏著劑於FEM分析,以搭配步驟1之力平衡,建立結構物的壓合下之應力分布,(3)進行降溫及卸壓。依參考文獻提供的材料數據,上述所有的步驟金凸塊皆設定為多線性等向硬化模式,矽晶片、玻璃基板、PI、鋁墊片等材料設為彈性,步驟二、三考慮樹脂黏著劑並設定其為線黏彈性模式,配合以廣義麥斯威爾模式所表示之體積、剪力鬆弛模數及以WLF方程式所定義的時間-溫度平移因子等材料參數,並將導電粒子設定為線彈性模式。分析結果顯示固定降溫歷程中,不同降壓速度對其Y向應力分布及大小之影響不大,存放30秒後,其應力鬆弛現象亦不顯著。

      在金凸塊及導電粒子接面應力上,比較ν(t)在0.35及0.475的波松比函數與常數0.35發現,後者會得到較低壓應力及較高剪應力,對結構破壞準則而言可得較保守的評估。波松比與CTE的偶合作用對平均接面壓應力的影響大於對平均接面剪應力的影響。金凸塊寬度在85至125 μm、高度在10至18μm的範圍內,其接面應力大小及分布並無太大的差異。

     This paper divides ACF nonlinear material properties in the mechanical analysis of Au bump bonding process course into Three steps: (1)To press, in this step this mechanics analysis consider resin as fluid state can not bear pressure, all pressure is born by hyperelastic material of a two coefficients Mooney-Rivlin rubber conductive particle of inside ,(2)Add the resin and analyse in FEM. According to match step 1 force equilibrium state, set up the same structure stress distribution. (3)Cooling and unloading. Material parameters are offered in the references, the gold bump in all step above-mentioned is considered as multilinear isotropic material, Si chip, glass, polyimide, Al pad are considered as elastic material. It is linear viscoelastic model with Bulk, Shear relaxation modulus which builded by Generalize Maxwell Model and WLF time-temperature shift factors equation to consider the resin in second, third step, and conductive particle consider as elastic material. The analysis results shows that in the cooling process, different unloading speed doesn't effect the value and distribution of Y stress. After preserving for 30 seconds, its stress relaxation is also not apparent.

     For the stress on the bump and the conductive particle interface, compare the Poisson ratio function ν(t) which the value between 0.35 and 0.475 with the Poisson ratio constant 0.35, the latter will result lower Y stress and higher shear stress, It's more conservative for structure failure criterion. The Poisson ratio and CTE coupling has more effective to the average interface compression stress then the average interface shear stress. Bump width in the range of 85μm to 125 μm, height in range of 10μm to 18μm, doesn't effect the interface stress value and distribution very much.

    摘要 I Abstract Ⅱ 誌謝 Ⅲ 目錄 Ⅵ 表目錄 Ⅶ 圖目錄 Ⅷ 第一章 緒論 1 1-1 前言 1 1-2 研究動機與目的 2 1-3 文獻回顧 2 1-4 研究方法 4 1-5 章節提要 5 第二章 覆晶封裝簡介與ACF概論 6 2-1 覆晶封裝簡介 6 2-2 ACF材料技術 8 第三章 ACF黏彈性材料參數及波松比 12 3-1 黏彈性理論 12 3-1-1 廣義的麥斯威爾模式 12 3-1-2黏彈性材料的波松效應 16 3-2 ACF的黏彈材料參數 17 3-2-1 黏彈性剪力鬆弛模數之探討 17 3-2-2 黏彈性材料Reduced Time 19 3-2-3 黏彈性材料的波松比 20 3-2-4 驗證ANSYS黏彈性材料波松比計算 22 第四章 ACF與金凸塊壓合製程模擬方法 39 4-1 定距離下單獨對粒子進行壓合的FEM模擬 39 4-1-1 有限元素模型建立 40 4-1-2 元素型態與材料參數 41 4-1-3 負載與邊界條件 42 4-1-4 進行結構分析 43 4-2 建構壓合後含樹脂黏著劑的FEM模型 43 4-2-1 有限元素模型建立 43 4-2-2 元素型態與材料參數 44 4-2-3 負載與邊界條件 46 4-2-4 進行結構分析 47 4-3 將壓合後的模型作降溫的FEM模擬 47 4-3-1 負載與邊界條件 47 4-3-2 網格建立 48 4-3-3 後處理與結構分析 50 第五章 ACF與金凸塊壓合製程力學分析與結果評估 65 5-1 同一降溫歷程下,不同降壓歷程對金、導電粒子及樹脂黏著劑接點應力的影響 66 5-2 降溫完成後,導電粒子與金凸塊接合處之應力分布 66 5-3 金凸塊大小及ACF樹脂黏著劑的材料參數等四個因子對接面上的應力分佈之影響 68 5-4 波松比與熱膨脹係數的偶合分析 74 5-5 探討時間對接面上殘留應力的影響 75 第六章 結論與未來方向 102 6-1 結論 102 6-2 未來方向 103 參考文獻 104

    [1] 王俊仁, “金/錫或Au/ACF結合影像感測器有限元素力學分析法之研究,” 國立成功大學工程科學系碩士論文, 中華民國九十三年六月.
    [2] Yim, M. J., and Paik, K. W., “Design and Understanding of Anisotropic Conductive Films (ACF’s) for LCD Packaging,” IEEE Transactions on Components Packaging and Manufacturing Technology-Part A, Vol.21, No.2, pp.226-234, 1998.
    [3] Dudek R.,Meinel S., Schubert A., Michel B., Dorfmüller L., Knoll P. M., and Baumbach J. “Flow Characterization and Thermo-Mechanical Response of Anisotropic Conductive Films,” IEEE Transactions on Components and Packaging Technology, Vol. 22, No.2, pp.177-185,June 1999.
    [4] O’Brien D. J., Mather P. T., and White S. R., “Viscoelastic Properties of an Epoxy Resin during Cure,” Journal of Composite Materials, Vol. 35, No.10, pp.883-904, 2001.
    [5] Hilton H. H. “Comments Regarding “Viscoelastic Properties of an Epoxy Resin during Cure” by D. J. O’Brien, P. T. Mather and S. R. White,” Journal of Composite Materials, Vol. 37, No. 1, pp.89-94, 2003.
    [6] Mercado L. L., White J., Sarihan V., and Lee T-Y T., “Failure Mechanism Study of Anisotropic Conductive Film (ACF) Packages,” IEEE Transactions on Components and Packaging Technologies, Vol. 26, No.3, pp.509-515,September 2003.
    [7] Savolainen P. “Display Driver Packaging: ACF Reaching the Limits?” IEEE 9th Int’l Symposium on Advanced Packaging Materials, pp.7-10, 2004.
    [8] Tummala R. R., “Fundamentals of Microsystems Packaging,”The McGraw-Hill Companies, Inc, 2001.
    [9] http://extra.ivf.se/ngl/B-Flip-Chip/ChapterB.htm
    [10] http://www.tech.oru.se/EPE/research/flip/flip.htm
    [11] http://www.soken-ce.co.jp/English/denshi/6.html
    [12] Shames, I. H., and Cozzarelli, F. A., “Elastic and Inelastic Stress Analysis,” Washington DC, Taylor and Francis, 1997.
    [13] ANSYS Menu, “Structures with Material Nonlinearities,” ANSYS Theory Reference 8.0, Ch.4, 2003.
    [14] 林佑信, “智慧卡於循環負載下黏彈力學分析.” 國立成功大學工程科學系碩士論文, 中華民國九十年六月.
    [15] Aklonis, J. J., MacKnight, W. J., and Silen, M., “Introduction to Polymer Viscoelasticity,” John Wiley & Sons, Inc., 1972.
    [16] Hilton H. H. “Implications and Constraints of Time Independent Poisson Ratios in Linear Isotropic and Anisotropic Viscoelasticity,” Journal of Elasticity, Paper No. ELAS2319, pp.1-44, 2001.
    [17] ANSYS Menu, “Hyperelasticity,” ANSYS Theory Reference 8.0, Ch.4, 2003.
    [18] ANSYS Menu, “VM201 Rubber Cylinder Pressed Between Two Plates,” ANSYS Verification Manual 8.0, 2003.
    [19] 林佳宏,“TAB/ILB成型過程之數值模擬與製程參數分析之研究,”國立中正大學機械工程研究所碩士論文,2001.
    [20] ANSYS Menu, “Viscoelastic Material Constants, ” ANSYS Element Reference 8.0, Ch.2, 2003.
    [21] ANSYS Menu, “Element Library,” ANSYS Element Reference 8.0, Part 1, 2003.
    [22] King, J. A., editor; associate editors, Julia F. et al., “Materials Handbook for hybrid Microelectronics,” Boston:Artech House, 1988.
    [23] Pecht, M. G., “Electronic Packaging Materials and Their Properties,” CRC Press LLC, 1999.

    下載圖示
    2005-07-07公開
    QR CODE