| 研究生: |
林怡君 Lin, Yi-Chun |
|---|---|
| 論文名稱: |
(K1-xLax/3)NbO3陶瓷材料的製備、分析、及介電性質 Preparation, Characterization, and Dielectric Properties of (K1-xLax/3)NbO3 Ceramic Materials |
| 指導教授: |
黃啟原
Huang, Chi-Yuen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 資源工程學系 Department of Resources Engineering |
| 論文出版年: | 2004 |
| 畢業學年度: | 92 |
| 語文別: | 中文 |
| 論文頁數: | 83 |
| 中文關鍵詞: | 鈮酸鉀 、鈮酸鉀鑭 |
| 外文關鍵詞: | KNbO3, (K1-xLax/3)NbO3 |
| 相關次數: | 點閱:41 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
鈮酸鉀 (Potassium niobate, KNbO3) 為一擁有鈣鈦礦結構之鐵電材料,室溫時為斜方晶系 (Orthorhombic),純鈮酸鉀之相轉換溫度分別為 -10℃、225℃、425℃由菱方晶系依序相轉換為斜方晶系、正方晶系、立方晶系。當KNbO3由立方晶體結構進入到正方晶體結構時,其介電性由沒有自發性極化 (Spontaneous polarization) 的順電性轉變成具有自發性極化的強電性,此一自發性極化之產生是因為晶體結構產生變化,使離子間形成相對位移所導致。根據結晶化學理論,選擇添加La至KNbO3中,使La取代部分K的位置合成 (K1-xLax/3)NbO3固溶體。本次研究採用固態反應法製備 (K1-xLax/3)NbO3粉末,佐以XRD相鑑定及最小平方法計算晶格常數,來分析 (K1-xLax/3)NbO3的固溶範圍。由此次實驗得知,當x=0.2時,(K1-xLax/3)NbO3的晶格常數仍在改變,可能尚未到達固溶極限。根據此次實驗結果,(K1-xLax/3)NbO3系統中 (K0.95La0.05/3)NbO3獲得較佳的性質,相對密度可到達99%。當頻率為1 kHz時,介電常數為1191、品質因子為44.1。此外,確定了(K1-xLax/3)NbO3的極化機制:KNbO3與 (K0.95La0.05/3)NbO3的極化機制包括方向極化、離子極化與電子極化;(K0.9La0.1/3)NbO3的極化機制包括空間電荷極化、方向極化、離子極化與電子極化。
Potassium niobate (KNbO3) crystal is a ferroelectric material with a perovskite-type crystal structure. The system of KNbO3 is orthorhombic in room temperature. The phase transition temperature of pure KNbO3 is -10℃, 225℃, and 425℃ from rhombohedral to tetragonal, and then to cubic. The dielectric properties of KNbO3 have changes from paraelectricity without spontaneous polarization to ferroelectricity with spontaneous polarization, when the system structure of KNbO3 changes from cubic to tetragonal. The opposite displacement between the ions causes the change of crystal structure and produce the situation of this spontaneous polarization. According to the crystal chemistry theory, La3+ was doped into KNbO3 with perovskite structure. (K1-xLax/3)NbO3 solid solution was synthesized by La3+ substituting for part sites of K+. Therefore, (K1-xLax/3)NbO3 powders was synthesized by solid state reaction in this study. It has better piezoelectric properties around the boundary of solid-state region. But, the biggest solid-state region was not clearly determined in this study and it may be more then 0.2 lanthanum addition. The component of (K1-xLax/3)NbO3 with best properties is (K0.95La0.5/3)NbO3. Relative density can get up to 99% at 1100℃ for 0.3 h. The relative dielectric constant is 1191 and quality factor is 44.1, when the frequency is 1 kHz. In addition, poling mechanism of (K1-xLax/3)NbO3 were determined according to the relative dielectric constant and quality factor were measured in 1 kHz and 1 MHz.
1. C.W. Ahn, I.W. Kim, M.S. Ha, W.K. Seo, J.S. Lee, and S.S. Yi,
“Dielectric and piezoelectric properties of lead-free
Na0.5Bi4.5-xLaxTi4O15 and Na0.5Bi4.5-xNdxTi4O15 ceramics,”
Ferroelectrics, 273, 2639-2644 (2002).
2. T. Fukami, T. Yokouchi, N. Bamba, B. Elouadi, and K. Toda,
“Piezoelectric properties in LiTaO3-CaTiO3 solid solution ceramics,”
Ferroelectrics, 273, 2743-2748 (2002).
3. H. Alaoui-Belghiti, R. Von der Muhll, A. Simon, M. Elaatmani, and J. Ravez, “Relaxor or classical ferroelectric behavior in ceramics with composition Sr(2-x)A(1+x)Nb(5)O(15-x)F(x) (A=Na, K),” Mater. Lett., 55 [3] 138-144 (2002).
4. Z. Yu, C. Ang, R.Y. Guo, and A.S. Bhalla, “Piezoelectric and strain properties of Ba(Ti1-xZrx)O3 ceramics,” J. Appl. Phys., 92 [3] 1489-1493 (2002).
5. K. Matsuo, R.J. Xie, Y. Akimune, and T. Sugiyama, “Preparation of lead-free Sr2-xCaxNaNb5O15 (x=0.1) based piezoceramics with tungsten bronze structure,” J. Ceram. Soc. Jpn., 110 [5] 491-494 (2002).
6. H. Nagata, T. Takahashi, Y. Yano, and T. Takenaka, “Electrical properties of SrxBi4-xTi3-xTaxO12 (0≦x≦1) lead-free piezoelectric ceramics, ” Key Eng. Mater., 7, 25-30 (2002).
7. B.J. Chu, G.R. Li, Q.R. Yin, W.Z. Zhang, and D.R. Chen, “Influence of nonstoichiometry and doping on electrical properties of (Na1/2Bi1/2)(0.92)Ba0.08TiO3 ceramics,” Acta Phys. Sinica, 50 [10] 2012-2016 (2001).
8. H. Ishii, H. Nagate, and T. Takenaka, “Morphotropic phase boundary and electrical properties of bisumuth sodium titanate-potassium niobate solid-solution ceramics,” Jpn. J. Appl. Phys. I, 40 [9B] 5660-5663 (2001).
9. T. Wada, K. Toyoike, Y. Imanaka, and Y. Matsuo, “Dielectric and piezoelectric properties of (A(0.5)Bi(0.5))TiO3-ANbO(3) (A=Na, K) systems,” Jpn. J. Appl. Phys. I, 40 [9B] 5703-5705 (2001).
10. Y. Hosono, K. Harada, and Y. Yamashita, “Crystal growth and electrical properties of lead-free piezoelectric material (Na1/2Bi1/2)TiO3-BaTiO3,” Jpn. J. Appl. Phys. I, 40 [9B] 5722-5726 (2001).
11. M. Nanao, M. Hirose, and T. Tsukada, “Piezoelectric properties of Bi3TiNbO9-BaBi2Nb2O9 ceramics,” Jpn. J. Appl. Phys. I, 40 [9B] 5727-5730 (2001).
12. Z. Yu, R.Y. Guo, and A.S. Bhalla, “Growth of Ba(Ti1-xZrx)O3 single crystals by the laser heated pedestal growth technique,” J. Cryst. Growth, 233 [3] 460-465 (2001).
13. H. Nagata and T. Takenaka, “Additive effects on electrical properties of (Bi1/2Na1/2)TiO3 ferroelectric ceramics,” J. Eur. Ceram. Soc., 21 [10-11] 1299-1302 (2001).
14. R. Von der Muhll, A. Simon, H. Khemakhem, and J. Ravez, “Pyroelectric and piezoelectric properties of new lead-free ceramics with composition Ba1-xNaxTi1-xNbxO3,” Ann. Chim. Sci. Mater., 26 [1] 127-130 (2001).
15. B.J. Chu, G.R. Li, X.P. Jiang, and D.R. Chen, “Piezoelectric property and relaxation phase transition of Na1/2Bi1/2TiO3-BaTiO3 system,” J. Inorg. Mater., 15 [5] 815-821 (2000).
16. M. Hirose, T. Suzuki, H. Oka, K. Itakura, Y. Miyauchi, and T. Tsukada, “Piezoelectric properties of SrBi4Ti4O15-based ceramics,” Jpn. J. Appl. Phys. I, 38 [9B] 5561-5563 (1999).
17. A. Sasaki, T. Chiba, Y. Mamiya, and E. Otsuki, “Dielectric and piezoelectric properties of (Bi0.5Na0.5)TiO3-(Bi0.5K0.5)TiO3 systems,” Jpn. J. Appl. Phys. I, 38 [9B] 5564-5567 (1999).
18. T. Takenaka, “Piezoelectric properties of some lead-free ferroelectric ceramics,” Ferroelectrics, 230 [1-4] 389-400 (1999).
19. H. Nagata, N. Koizumi, N. Kuroda, I. Igarashi, and T. Takenaka, “Lead-free piezoelectric ceramics of (Bi1/2Na1/2)TiO3-BaTiO3-BiFeO3 system,” Ferroelectrics, 229 [1-4] 273-278 (1999).
20. T. Takenaka and H. Nagata, “Present status of non-lead-based piezoelectric ceramics,” Key Eng. Mater., 157-1, 57-63 (1999).
21. Y. M. Chiang, G. W. Farrey, and A.N. Soukhojak, “Lead-free high-strain single-crystal piezoelectrics in the alkaline-bismuth- titanate perovskite family,” Appl. Phys. Lett., 73 [25] 3683-3685 (1998).
22. T. Takenaka and H. Nagata, “Lead-free piezoelectric ceramics of (Bi1/2Na1/2)TiO3-KNbO3-1/2(Bi2O3‧Sc2O3) system,” Jpn. J. Appl. Phys. I, 37 [9B] 5311-5314 (1998).
23. T. Takenaka and H. Nagata, “(Bi1/2Na1/2)TiO3-based non-lead piezoelectric ceramics,” J. Korean Phys. Soc., 32, S1298-S1300, Part 3 Suppl. S, (1998).
24. M. Kimura, T. Minamikawa, A. Ando, Y. Sakabe, “Temperature characteristics of (Ba1-xSrx)(2)NaNb5O15 ceramics,” Jpn. J. Appl. Phys. I, 36 [9B] 6051-6054 (1997).
25. T. Takenaka and H. Nagata, “Lead-free piezoelectric ceramics of (Bi1/2Na1/2)TiO3-1/2(Bi2O3‧Sc2O3) system,” Jpn. J. Appl. Phys. I, 36 [9B] 6055-6057 (1997).
26. T. Takenaka, T. Okuda, and K. Takegahara, “Lead-free piezoelectric ceramics based on (Bi1/2Na1/2)TiO3-NaNbO3,” Ferroelectrics, 196 [1-4] 495-498 (1997).
27. N. Kaewkamnerd, T. Takenaka, K. Sakata, and K. Toda, “Material characterization of (Bi1/2Na1/2)(0.94)Ba0.06TiO3 ceramic as a lamb wave device substrate,” Sensor. Mater., 9 [1] 47-55 (1997).
28. T. Takenaka, K. Maruyama, and K. Sakata, “(Bi1/2Na1/2)TiO3-BaTiO3 system for lead-free piezoelectric ceramics,” Jpn. J. Appl. Phys. I, 30 [9B] 2236-2239 (1991).
29. T. Takenaka, K. Sakata, and K. Toda, “Acoustic-wave characteristics of lead-free (Bi1/2Na1/2)0.99Ca0.01TiO3 piezoelectric ceramic,” Jpn. J. Appl. Phys. I, 28, 9-62, Suppl. 28-2 (1989).
30. M. Kimura, A. Ando, T. Sawada, and K. Hayashi, U.S. Patent 6258291, Jul. 10, (2001).
31. T. Takenaka, M. Hirose, and K. Miyabe, U.S. Patent 6004474, Dec. 12, (1999).
32. T. Takenaka, U.S. Patent 5637542, Jun. 10, (1997).
33. T. Takenaka, M. Hirose, and K. Miyabe, U.S. Patent 6080327, Jun. 27, (2000).
34. M. Kimura, T. Ogawa, and A. Ando, U.S. Patent 6093339, Jul. 25,
(2000).
35. 廣瀨正和、岡均、塚田岳夫,中華民國專利 475924,Feb. 11,
(2002)。
36. 澤田拓也、木村雅彥、安藤陽、林宏一,中華民國專利473742
Jan. 21,(2002)。
37. 澤田拓也、木村雅彥、安藤陽、林宏一,中華民國專利469447,Dec. 21,(2001)。
38. 澤田拓也、木村雅彥、安藤陽、林宏一,中華民國專利469446,Dec. 21,(2001)。
39. 木村雅彥、小川智之、安藤陽,中華民國專利429636,Apr. 11,
(2001)。
40. A. J. Moulson and J.M. Herbert, Electroceramics, Chapman and Hall, London, (1990).
41. A.S. Bhalla, R. Guo, and R. Roy, “The perovskite structure – a review of its role in ceramic science and technology,” Mater. Res. Innovat., 4, 3-26 (2000).
42. B. Jaffe, W. R. Cook Jr. and H. Jaffe, Piezoelectric Ceramics, Cleveland, Ohio, (1971).
43. H. Odagawa and K. Yamanouchi, “Superhigh electromechanical coupling and zero-temperature characteristics of KNbO3 and wide band filter applications,” Jpn. J. Appl. Phys.,37, 2929-2932 (1998).
44. V. K. Yanovskii, Phys. Stat. Sol., 81, 399-406 (1984).
45. W. D. Kingery, H. K. Bowen, and D. R. Uhlmann. Introduction to ceramics, John Wiley and Sons, New York, (1976).
46. C. G. Bergeron and S. H. Risbud, Introduction to phase equilibria in ceramics, The American Ceramic Society Inc., Columbus, Ohio, (1984).
47. W. H. Lee, W. A. Groen, and D. Hennings, “Dysprosium doped dielectric materials for sintering in reducing atmospheres,” J. Electronceram., 5, 31-36 (2000).
48. D. Hennings, “Dielectric materials for sintering in reducing atmospheres,” J. Eur. Ceram. Soc., 21, 1637-1642 (2001).
49. 吳朗,電子陶瓷(壓電),全欣科技圖書,(1994)。
50. U. Fluckiger, H. Arend, and H. R. Oswald, J. Am. Ceram. Soc., 56,
575 (1977).
51. K. J. Kim and E. Matijevic, J. Mater. Res.,7, 912 (1992).
52. M. M. Amni and M. D. Sacks, “Synthesis of potassium niobate from
metal alkoxides,” J. Am. Ceram. Soc., 74, 53-59 (1991).
53. C. H. Lu and S. Y. Lo, “Hydrothermal synthesis of nonlinear optical
potassium niobate,” Mater. Lett., 34, 172-176 (1998).
54. C. H. Lu, S. Y. Lo, and Y. L. Wang, Mater. Lett., 55, 121-125 (2002).
55. A.M. Abakumov, R. V. Shpanchenko, and E. V. Antipov, “Synthesis
and properties of niobium bronzes R1+xNb3O9(R=La, Ce, Nd),” Mat. Res. Bull., 30, 97-103 (1995).
56. L. Carrillo, M. E. Villafuerte , and L. E. Sansores, “Superstructure
determination of perovskite βLa0.33NbO3,” J. Mater. Sci., 35,
3047-3052 (2000).
57. J. Gopalakrishnan and V. Bhat, “AILaNb2O7 : A new series of layered
perovskites exchange and intercalation behavior,” Mat. Res. Bull., 22, 413-417 (1987).
58. M. Sato, J. Watanabe, and K. Uematsu, “Crystal structure and ionic
conductivity of a layer perovskite, AgLaNb2O7,” J. Solid State Chem., 107, 460-470 (1993).
59. C. Y. Huang, Thermal expansion behavior of sodium zirconium
phosphate structure type materials, Ph. D thesis, Pennsylvania State University, (1990).