簡易檢索 / 詳目顯示

研究生: 羅義凱
Lou, Yi-Kai
論文名稱: 奈米銀微粒在哺乳類細胞株與小鼠動物模型中的危害測試
Hazard estimation of silver nanoparticles in mammalian cells and mouse model
指導教授: 王應然
Wang, Ying-Jan
學位類別: 碩士
Master
系所名稱: 醫學院 - 環境醫學研究所
Department of Environmental and Occupational Health
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 67
中文關鍵詞: 奈米銀物化特性資料探勘細胞凋亡自體吞噬細胞週期停滯
外文關鍵詞: silver nanoparticles, physico-chemical properties, data mining, apoptosis, autophagy, cell cycle arrest
相關次數: 點閱:107下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著奈米科技的發展,奈米材料已廣泛的運用在生活之中。本研究測試及比較了七種不同細胞株,分別為肺臟、肝臟、腎臟、小腸、皮膚與免疫系統,暴露在四種不同表面修飾(如檸檬酸鈉和2-氨基乙硫醇)與大小(約20奈米及50-80奈米)的奈米銀粒子(分別為SCS、LCS、SAS與LAS)中所造成的毒性影響。為了探討詳細的細胞作用機制,我們對這些微粒所誘導的細胞自噬、細胞週期停滯與細胞凋亡間的相互關係進行研究。此外我們也以腹腔注射小鼠的模式測試奈米銀的急毒性與生物動力學影響。
    實驗中我們測定了這些奈米銀的物化特性與對不同細胞株的細胞毒性。當細胞暴露不同奈米銀粒子24與48小時以後我們使用MTT/MTS分析法進行測試,分析後所得數據以樹狀分類模型(J48)進行預測模型的建構。為了探討奈米銀所誘導的細胞自噬、細胞週期停滯與細胞凋亡間的關係,我們使用Acridine orange、Propidium iodide及Annexin V-FITC/PI 染色並透過流式細胞儀分析與西方墨點法觀察蛋白表現,藉此探討奈米銀所誘導細胞產生細胞自噬、細胞週期停滯與細胞凋亡之間的關係。不同種類及濃度的奈米銀粒子以腹腔注射方式注入BALB/c小鼠體內,所有的動物在給藥後2、7或14天犧牲。分析小鼠的各項血清生化值與組織病理判斷其毒性影響,並使用Graphite Furnace Atomic Absorption (GF-AA)與Non Invasion In Vivo Imaging System (IVIS)分析其生物動力學。
    根據樹狀圖模型我們排序了影響毒性的參數,依序為:奈米銀濃度(最具影響力)、暴露細胞種類(細胞敏感度由高到低依序為: IEC-6 ≧BEAS-2B ≧HEK-293 > AML12 >Clone-9 = HaCaT= THP-1)、奈米銀種類(毒性由強到弱: SCS> SAS≧LCS> LAS)。我們也證實了暴露15 μg/ml的奈米銀會誘發細胞自噬與細胞凋亡。在低濃度的奈米銀暴露中細胞週期停滯蛋白,如p27、CDK2、Cyclin A 與 Cyclin B會隨著細胞自噬的相關蛋白表現的增加而減弱。在動物實驗中,我們發現注射8 mg/kg SCS能夠誘發小鼠產生顯著的毒性,但除了胰臟外,並無發現其它器官有明顯的受損情形。
    根據本篇研究結果,我們認為KDD模式能夠有效的幫助我們建構毒性分析模型。我們也發現到LCS奈米銀在不同劑量下所誘導的細胞機制不同。在動物模型中,我們證實了注射SCS能夠誘發小鼠出現顯著的毒性反應,也在胰臟中觀察到受損的現象。

    In this study, the toxicological effects of four sliver nanoparticles (AgNPs) with different surface-modified and size were examined and compared by using seven different cell lines representing lung, liver, kidney, intestine, skin and the immune system, and evaluated the acute toxicity and biokinetics of intraperitoneal administered silver nanoparticles (AgNPs) in mouse model. We employing MTT/MTS test as end point assays following exposures AgNPs. Data analysis and predictive modeling of the obtained data sets was executed by employing a decision tree model. Flow cytometry and western blot was used to analyze the levels of autophagy, cell cycle arrest and apoptosis. Mice were intraperitoneal injected with different types and dosages of AgNPs and sacrificed on day 2, 7 or 14 after exposure. Toxic effects were assessed via serum biochemical parameters and histopathological observation of the mice. Biokinetics of AgNPs were determined by GF-AA and IVIS. The decision tree model yielded the following order with decrease of the ranking parameter. We demonstrate that exposure to AgNPs induced autophagy, apoptosis, cell arrest and cell senescence in AML12 cells. In vivo study showed significant toxicity in 8 mg/kg SCS treatment mouse and demonstrated damage in pancreas.

    目錄 第一章、序論 1 第二章、文獻回顧 2 第一節、奈米銀應用與毒性 2 第二節、銀離子在奈米銀微粒造成之毒性反應中所扮演之角色 3 第三節、奈米銀微粒物化特性及其表面修飾 4 第四節、奈米銀誘導之毒性機轉 6 一、奈米銀在in vitro的毒性 6 二、奈米所誘導之細胞凋亡與細胞自噬之間的相關性 6 三、奈米銀誘發細胞週期停滯與老化的現象 7 第五節、以預測毒理學模式進行奈米毒性評估 8 第六節、數據資訊探索(Knowledge discovery from data, KDD)和數據挖掘(Data mining, DM) 9 第七節、奈米銀在動物模型中產生的毒性機制 10 第三章、研究目的 11 第四章、研究架構 12 第五章、材料與方法 14 第一節、研究材料 14 (一)細胞株 14 (二)儀器 15 (三)試劑與耗材 16 (四)溶液 18 第二節、研究方法與實驗步驟 19 (一) 奈米銀合成方法 19 (二) 物化性分析方法 21 (三) 細胞試驗與方法 22 (四) 使用KDD分析不同奈米銀的細胞毒性影響並建構毒性預測模型 26 (五) 動物實驗 27 (六)統計分析 27 第六章、研究結果 28 第一節、奈米銀物化特性分析 28 第二節、各種細胞株暴露於不同奈米銀微粒中的細胞毒性測試結果 29 第三節、KDD分析各種細胞株暴露於不同奈米銀之下的細胞毒性影響並建構毒性預測模型 30 第四節、探討細胞暴露奈米銀微粒後所誘發的自體吞噬效應 31 第五節、探討奈米銀微粒誘導細胞死亡機制 32 第六節、奈米銀誘發AML12細胞的細胞週期停滯與老化 32 第七節、探討AML12細胞暴露不同濃度之LCS奈米銀所誘導之細胞機制變化 33 第八節、利用小鼠模型進行奈米銀急毒性暴露的探討 35 (一)兩種奈米銀的急毒性測試 35 (二)奈米銀在小鼠器官中的分佈 35 (三)奈米銀所影響小鼠血清生化值的變化 35 (四)奈米銀對於小鼠器官的毒性影響 36 (五)小鼠組織切片及H&E染色結果 36 第七章、討論 37 第八章、結論與建議 42 第九章、文獻參考 43 圖表 51

    A KC, Sengupta P, Goswami H, Sarkar M. 2012. Excessive dietary calcium in the disruption of structural and functional status of adult male reproductive system in rat with possible mechanism. Molecular and Cellular Biochemistry 364:181-191.
    Ahuja V, Sharma S. 2014. Drug safety testing paradigm, current progress and future challenges: An overview. Journal of Applied Toxicology 34(6):576-94.
    Ansari MA, Khan HM, Khan AA, Alzohairy MA, Waseem M, Ahmad MK, et al. 2015. Biochemical, histopathological, and transmission electron microscopic ultrastructural changes in mice after exposure to silver nanoparticles. Environ Toxicol 31(8):945-56.
    Asharani PV, Hande MP, Valiyaveettil S. 2009. Anti-proliferative activity of silver nanoparticles. BMC Cell Biol 10:65.
    Aubry JP, Blaecke A, Lecoanet-Henchoz S, Jeannin P, Herbault N, Caron G, et al. 1999. Annexin v used for measuring apoptosis in the early events of cellular cytotoxicity. Cytometry 37:197-204.
    Benn TM, Westerhoff P. 2008. Nanoparticle silver released into water from commercially available sock fabrics. Environmental Science & Technology 42:4133-4139.
    Bergin IL, Wilding LA, Morishita M, Walacavage K, Ault AP, Axson JL, et al. 2016. Effects of particle size and coating on toxicologic parameters, fecal elimination kinetics and tissue distribution of acutely ingested silver nanoparticles in a mouse model. Nanotoxicology 10:352-360.
    Blaser SA, Scheringer M, Macleod M, Hungerbuhler K. 2008. Estimation of cumulative aquatic exposure and risk due to silver: Contribution of nano-functionalized plastics and textiles. The Science of the total Environment 390:396-409.
    Bonner JC, Silva RM, Taylor AJ, Brown JM, Hilderbrand SC, Castranova V, et al. 2013. Interlaboratory evaluation of rodent pulmonary responses to engineered nanomaterials: The niehs nano go consortium. Environ Health Perspect 121:676-682.
    Bui CB, Shin J. 2011. Persistent expression of nqo1 by p62-mediated nrf2 activation facilitates p53-dependent mitotic catastrophe. Biochem Biophys Res Commun 412:347-352.
    Capparelli C, Chiavarina B, Whitaker-Menezes D, Pestell TG, Pestell RG, Hulit J, et al. 2012. Cdk inhibitors (p16/p19/p21) induce senescence and autophagy in cancer-associated fibroblasts, "fueling" tumor growth via paracrine interactions, without an increase in neo-angiogenesis. Cell Cycle 11:3599-3610.
    Cha K, Hong HW, Choi YG, Lee MJ, Park JH, Chae HK, et al. 2008. Comparison of acute responses of mice livers to short-term exposure to nano-sized or micro-sized silver particles. Biotechnology Letters 30:1893-1899.
    Chae YJ, Pham CH, Lee J, Bae E, Yi J, Gu MB. 2009. Evaluation of the toxic impact of silver nanoparticles on japanese medaka (oryzias latipes). Aquatic toxicology 94:320-327.
    Chairuangkitti P, Lawanprasert S, Roytrakul S, Aueviriyavit S, Phummiratch D, Kulthong K, et al. 2013. Silver nanoparticles induce toxicity in a549 cells via ros-dependent and ros-independent pathways. Toxicol In Vitro 27:330-338.
    Chaloupka K, Malam Y, Seifalian AM. 2010. Nanosilver as a new generation of nanoproduct in biomedical applications. Trends in Biotechnology 28:580-588.
    Chen D, Xi T, Bai J. 2007. Biological effects induced by nanosilver particles: In vivo study. Biomedical Materials 2:S126-128.
    Chen X, Schluesener HJ. 2008. Nanosilver: A nanoproduct in medical application. Toxicology Letters 176:1-12.
    Debacq-Chainiaux F, Erusalimsky JD, Campisi J, Toussaint O. 2009. Protocols to detect senescence-associated beta-galactosidase (sa-betagal) activity, a biomarker of senescent cells in culture and in vivo. Nat Protoc 4:1798-1806.
    Donaldson K, Stone V, Clouter A, Renwick L, MacNee W. 2001. Ultrafine particles. Occupational and environmental medicine 58:211-216.
    dos Santos CA, Seckler MM, Ingle AP, Gupta I, Galdiero S, Galdiero M, et al. 2014. Silver nanoparticles: Therapeutical uses, toxicity, and safety issues. J Pharm Sci 103:1931-1944.
    Farcal L, Torres Andon F, Di Cristo L, Rotoli BM, Bussolati O, Bergamaschi E, et al. 2015. Comprehensive in vitro toxicity testing of a panel of representative oxide nanomaterials: First steps towards an intelligent testing strategy. PLoS One 10:e0127174.
    Foldbjerg R, Olesen P, Hougaard M, Dang DA, Hoffmann HJ, Autrup H. 2009. Pvp-coated silver nanoparticles and silver ions induce reactive oxygen species, apoptosis and necrosis in thp-1 monocytes. Toxicology letters 190:156-162.
    Foldbjerg R, Dang DA, Autrup H. 2011. Cytotoxicity and genotoxicity of silver nanoparticles in the human lung cancer cell line, a549. Archives of toxicology 85:743-750.
    Fubini B, Ghiazza M, Fenoglio I. 2010a. Physico-chemical features of engineered nanoparticles relevant to their toxicity. Nanotoxicology 4:347-363.
    Fubini B, Ghiazza M, Fenoglio I. 2010b. Physico-chemical features of engineered nanoparticles relevant to their toxicity. Nanotoxicology 4:347-363.
    Glick D, Barth S, Macleod KF. 2010. Autophagy: Cellular and molecular mechanisms. The Journal of pathology 221:3-12.
    Guo L, Nie J, Du B, Peng Z, Tesche B, Kleinermanns K. 2008. Thermoresponsive polymer-stabilized silver nanoparticles. Journal of colloid and interface science 319:175-181.
    Gurunathan S, Han JW, Eppakayala V, Jeyaraj M, Kim JH. 2013. Cytotoxicity of biologically synthesized silver nanoparticles in mda-mb-231 human breast cancer cells. Biomed Res Int 2013:535796.
    Halamoda Kenzaoui B, Chapuis Bernasconi C, Guney-Ayra S, Juillerat-Jeanneret L. 2012. Induction of oxidative stress, lysosome activation and autophagy by nanoparticles in human brain-derived endothelial cells. The Biochemical journal 441:813-821.
    Han X, Gelein R, Corson N, Wade-Mercer P, Jiang J, Biswas P, et al. 2011. Validation of an ldh assay for assessing nanoparticle toxicity. Toxicology 287:99-104.
    Hao J, Han MJ, Li J, Meng X. 2012. Surface modification of silver nanofilms for improved perchlorate detection by surface-enhanced raman scattering. Journal of colloid and interface science 377:51-57.
    Hood E. 2004. Nanotechnology: Looking as we leap. Environmental health perspectives 112:A740-749.
    Horev-Azaria L, Kirkpatrick CJ, Korenstein R, Marche PN, Maimon O, Ponti J, et al. 2011. Predictive toxicology of cobalt nanoparticles and ions: Comparative in vitro study of different cellular models using methods of knowledge discovery from data. Toxicological sciences : an official journal of the Society of Toxicology 122:489-501.
    Horev-Azaria L, Baldi G, Beno D, Bonacchi D, Golla-Schindler U, Kirkpatrick JC, et al. 2013. Predictive toxicology of cobalt ferrite nanoparticles: Comparative in-vitro study of different cellular models using methods of knowledge discovery from data. Particle and fibre toxicology 10:32.
    Impellitteri CA, Tolaymat TM, Scheckel KG. 2009. The speciation of silver nanoparticles in antimicrobial fabric before and after exposure to a hypochlorite/detergent solution. Journal of environmental quality 38:1528-1530.
    Jena P, Mohanty S, Mallick R, Jacob B, Sonawane A. 2012. Toxicity and antibacterial assessment of chitosan-coated silver nanoparticles on human pathogens and macrophage cells. International journal of nanomedicine 7:1805-1818.
    Kang SJ, Lee YJ, Lee EK, Kwak MK. 2012a. Silver nanoparticles-mediated g2/m cycle arrest of renal epithelial cells is associated with nrf2-gsh signaling. Toxicol Lett 211:334-341.
    Kang SJ, Ryoo IG, Lee YJ, Kwak MK. 2012b. Role of the nrf2-heme oxygenase-1 pathway in silver nanoparticle-mediated cytotoxicity. Toxicology and applied pharmacology 258:89-98.
    Karna P, Zughaier S, Pannu V, Simmons R, Narayan S, Aneja R. 2010. Induction of reactive oxygen species-mediated autophagy by a novel microtubule-modulating agent. The Journal of biological chemistry 285:18737-18748.
    Katsnelson BA, Privalova LI, Gurvich VB, Makeyev OH, Shur VY, Beikin YB, et al. 2013. Comparative in vivo assessment of some adverse bioeffects of equidimensional gold and silver nanoparticles and the attenuation of nanosilver's effects with a complex of innocuous bioprotectors. Int J Mol Sci 14:2449-2483.
    Kim HR, Kim MJ, Lee SY, Oh SM, Chung KH. 2011. Genotoxic effects of silver nanoparticles stimulated by oxidative stress in human normal bronchial epithelial (beas-2b) cells. Mutation research 726:129-135.
    Kim S, Choi JE, Choi J, Chung KH, Park K, Yi J, et al. 2009. Oxidative stress-dependent toxicity of silver nanoparticles in human hepatoma cells. Toxicology in vitro : an international journal published in association with BIBRA 23:1076-1084.
    Kim TH, Kim M, Park HS, Shin US, Gong MS, Kim HW. 2012. Size-dependent cellular toxicity of silver nanoparticles. Journal of biomedical materials research Part A 100:1033-1043.
    Kim YS, Song MY, Park JD, Song KS, Ryu HR, Chung YH, et al. 2010. Subchronic oral toxicity of silver nanoparticles. Particle and fibre toxicology 7:20.
    Kroemer G, Marino G, Levine B. 2010. Autophagy and the integrated stress response. Molecular cell 40:280-293.
    Kwak MK, Kensler TW. 2010. Targeting nrf2 signaling for cancer chemoprevention. Toxicol Appl Pharmacol 244:66-76.
    Lee TY, Liu MS, Huang LJ, Lue SI, Lin LC, Kwan AL, et al. 2013. Bioenergetic failure correlates with autophagy and apoptosis in rat liver following silver nanoparticle intraperitoneal administration. Particle and fibre toxicology 10:40.
    Levkau B, Koyama H, Raines EW, Clurman BE, Herren B, Orth K, et al. 1998. Cleavage of p21(cip1/waf1) and p27(kip1) mediates apoptosis in endothelial cells through activation of cdk2: Role of a caspase cascade. Molecular Cell 1:553-563.
    Li X, Xu L, Shao A, Wu G, Hanagata N. 2013. Cytotoxic and genotoxic effects of silver nanoparticles on primary syrian hamster embryo (she) cells. Journal of nanoscience and nanotechnology 13:161-170.
    Loeschner K, Hadrup N, Qvortrup K, Larsen A, Gao X, Vogel U, et al. 2011. Distribution of silver in rats following 28 days of repeated oral exposure to silver nanoparticles or silver acetate. Particle and fibre toxicology 8:18.
    Mah LY, Ryan KM. 2012. Autophagy and cancer. Cold Spring Harb Perspect Biol 4:a008821.
    Maneewattanapinyo P, Banlunara W, Thammacharoen C, Ekgasit S, Kaewamatawong T. 2011. An evaluation of acute toxicity of colloidal silver nanoparticles. J Vet Med Sci 73:1417-1423.
    Mao BH, Tsai JC, Chen CW, Yan SJ, Wang YJ. 2016. Mechanisms of silver nanoparticle-induced toxicity and important role of autophagy. Nanotoxicology:1-20.
    Marino G, Niso-Santano M, Baehrecke EH, Kroemer G. 2014. Self-consumption: The interplay of autophagy and apoptosis. Nat Rev Mol Cell Biol 15:81-94.
    Mishra AR, Zheng J, Tang X, Goering PL. 2016. Silver nanoparticle-induced autophagic-lysosomal disruption and nlrp3-inflammasome activation in hepg2 cells is size-dependent. Toxicological sciences : an official journal of the Society of Toxicology 150:473-487.
    Miura N, Shinohara Y. 2009. Cytotoxic effect and apoptosis induction by silver nanoparticles in hela cells. Biochemical and biophysical research communications 390:733-737.
    Miyayama T, Arai Y, Hirano S. 2012. [environmental exposure to silver and its health effects]. Nihon eiseigaku zasshi Japanese journal of hygiene 67:383-389.
    Morones-Ramirez JR, Winkler JA, Spina CS, Collins JJ. 2013. Silver enhances antibiotic activity against gram-negative bacteria. Sci Transl Med 5:190ra81.
    Murdock RC, Braydich-Stolle L, Schrand AM, Schlager JJ, Hussain SM. 2008. Characterization of nanomaterial dispersion in solution prior to in vitro exposure using dynamic light scattering technique. Toxicological sciences : an official journal of the Society of Toxicology 101:239-253.
    Navarro E, Piccapietra F, Wagner B, Marconi F, Kaegi R, Odzak N, et al. 2008. Toxicity of silver nanoparticles to chlamydomonas reinhardtii. Environmental science & technology 42:8959-8964.
    Nel A, Xia T, Meng H, Wang X, Lin S, Ji Z, et al. 2013. Nanomaterial toxicity testing in the 21st century: Use of a predictive toxicological approach and high-throughput screening. Accounts of chemical research 46:607-621.
    Nel AE, Madler L, Velegol D, Xia T, Hoek EM, Somasundaran P, et al. 2009. Understanding biophysicochemical interactions at the nano-bio interface. Nat Mater 8:543-557.
    Ott M, Gogvadze V, Orrenius S, Zhivotovsky B. 2007. Mitochondria, oxidative stress and cell death. Apoptosis : an international journal on programmed cell death 12:913-922.
    Park MV, Neigh AM, Vermeulen JP, de la Fonteyne LJ, Verharen HW, Briede JJ, et al. 2011. The effect of particle size on the cytotoxicity, inflammation, developmental toxicity and genotoxicity of silver nanoparticles. Biomaterials 32:9810-9817.
    Persson M, Loye AF, Jacquet M, Mow NS, Thougaard AV, Mow T, et al. 2014. High-content analysis/screening for predictive toxicology: Application to hepatotoxicity and genotoxicity. Basic & clinical pharmacology & toxicology 115(1):18-23.
    Powers CM, Badireddy AR, Ryde IT, Seidler FJ, Slotkin TA. 2011. Silver nanoparticles compromise neurodevelopment in pc12 cells: Critical contributions of silver ion, particle size, coating, and composition. Environmental health perspectives 119:37-44.
    Prasad RY, McGee JK, Killius MG, Suarez DA, Blackman CF, DeMarini DM, et al. 2013. Investigating oxidative stress and inflammatory responses elicited by silver nanoparticles using high-throughput reporter genes in hepg2 cells: Effect of size, surface coating, and intracellular uptake. Toxicol In Vitro 27:2013-2021.
    Prot JM, Bunescu A, Elena-Herrmann B, Aninat C, Snouber LC, Griscom L, et al. 2012. Predictive toxicology using systemic biology and liver microfluidic "on chip" approaches: Application to acetaminophen injury. Toxicology and applied pharmacology 259:270-280.
    Salama R, Sadaie M, Hoare M, Narita M. 2014. Cellular senescence and its effector programs. Genes Dev 28:99-114.
    Sargent LM, Porter DW, Staska LM, Hubbs AF, Lowry DT, Battelli L, et al. 2014. Promotion of lung adenocarcinoma following inhalation exposure to multi-walled carbon nanotubes. Particle and fibre toxicology 11:3.
    Sawai H, Domae N. 2011. Discrimination between primary necrosis and apoptosis by necrostatin-1 in annexin v-positive/propidium iodide-negative cells. Biochemical and biophysical research communications 411:569-573.
    Schluesener JK, Schluesener HJ. 2013. Nanosilver: Application and novel aspects of toxicology. Arch Toxicol 87:569-576.
    Sharma VK, Siskova KM, Zboril R, Gardea-Torresdey JL. 2014. Organic-coated silver nanoparticles in biological and environmental conditions: Fate, stability and toxicity. Adv Colloid Interface Sci 204:15-34.
    Sileikaite A, Puiso J, Prosycevas I, Tamulevicius S. 2009. Investigation of silver nanoparticles formation kinetics during reduction of silver nitrate with sodium citrate. Mater Sci-Medzg+ 15:21-27.
    Silva T, Pokhrel LR, Dubey B, Tolaymat TM, Maier KJ, Liu X. 2014. Particle size, surface charge and concentration dependent ecotoxicity of three organo-coated silver nanoparticles: Comparison between general linear model-predicted and observed toxicity. Sci Total Environ 468-469:968-976.
    Solomon SD, Bahadory M, Jeyarajasingam AV, Rutkowsky SA, Boritz C, Mulfinger L. 2007. Synthesis and study of silver nanoparticles. J Chem Educ 84:322-325.
    Tabatabaei SR, Moshrefi M, Askaripour M. 2015. Prenatal exposure to silver nanoparticles causes depression like responses in mice. Indian J Pharm Sci 77:681-686.
    Tejamaya M, Romer I, Merrifield RC, Lead JR. 2012. Stability of citrate, pvp, and peg coated silver nanoparticles in ecotoxicology media. Environ Sci Technol 46:7011-7017.
    Tiwari DK, Jin T, Behari J. 2011. Dose-dependent in-vivo toxicity assessment of silver nanoparticle in wistar rats. Toxicol Mech Methods 21:13-24.
    Tolaymat TM, El Badawy AM, Genaidy A, Scheckel KG, Luxton TP, Suidan M. 2010. An evidence-based environmental perspective of manufactured silver nanoparticle in syntheses and applications: A systematic review and critical appraisal of peer-reviewed scientific papers. The Science of the total environment 408:999-1006.
    Wang RC, Levine B. 2010. Autophagy in cellular growth control. FEBS Lett 584:1417-1426.
    Warheit DB, Webb TR, Colvin VL, Reed KL, Sayes CM. 2007a. Pulmonary bioassay studies with nanoscale and fine-quartz particles in rats: Toxicity is not dependent upon particle size but on surface characteristics. Toxicological sciences : an official journal of the Society of Toxicology 95:270-280.
    Warheit DB, Webb TR, Reed KL, Frerichs S, Sayes CM. 2007b. Pulmonary toxicity study in rats with three forms of ultrafine-tio2 particles: Differential responses related to surface properties. Toxicology 230:90-104.
    Warheit DB. 2008. How meaningful are the results of nanotoxicity studies in the absence of adequate material characterization? Toxicological sciences : an official journal of the Society of Toxicology 101:183-185.
    Xia T, Kovochich M, Liong M, Madler L, Gilbert B, Shi H, et al. 2008. Comparison of the mechanism of toxicity of zinc oxide and cerium oxide nanoparticles based on dissolution and oxidative stress properties. ACS nano 2:2121-2134.
    Xiu ZM, Zhang QB, Puppala HL, Colvin VL, Alvarez PJ. 2012. Negligible particle-specific antibacterial activity of silver nanoparticles. Nano letters 12:4271-4275.
    Xu L, Li X, Takemura T, Hanagata N, Wu G, Chou LL. 2012. Genotoxicity and molecular response of silver nanoparticle (np)-based hydrogel. Journal of nanobiotechnology 10:16.
    Xue Y, Zhang S, Huang Y, Zhang T, Liu X, Hu Y, et al. 2012. Acute toxic effects and gender-related biokinetics of silver nanoparticles following an intravenous injection in mice. J Appl Toxicol 32:890-899.
    Yu J, Liu C, Zheng G, Zhang LY, Yan M, Zhang W, et al. 2013. Pseudolaric acid b induced cell cycle arrest, autophagy and senescence in murine fibrosarcoma l929 cell. Int J Med Sci 10:707-718.
    Yu XJ, Han QB, Wen ZS, Ma L, Gao J, Zhou GB. 2012. Gambogenic acid induces g1 arrest via gsk3beta-dependent cyclin d1 degradation and triggers autophagy in lung cancer cells. Cancer Lett 322:185-194.
    Yuan X, Setyawati MI, Leong DT, Xie JP. 2014. Ultrasmall ag+-rich nanoclusters as highly efficient nanoreservoirs for bacterial killing. Nano Res 7:301-307.
    Zhang K, Melo MA, Cheng L, Weir MD, Bai Y, Xu HH. 2012. Effect of quaternary ammonium and silver nanoparticle-containing adhesives on dentin bond strength and dental plaque microcosm biofilms. Dental materials : official publication of the Academy of Dental Materials 28:842-852.
    Zhu JS, Ouyang DY, Shi ZJ, Xu LH, Zhang YT, He XH. 2012. Cucurbitacin b induces cell cycle arrest, apoptosis and autophagy associated with g actin reduction and persistent activation of cofilin in jurkat cells. Pharmacology 89:348-346.

    無法下載圖示 校內:2021-07-04公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE