| 研究生: |
李浩宇 Lee, Hao-Yu |
|---|---|
| 論文名稱: |
以混合物實驗設計研製混摻雙電性添加物之雙電性離子水凝膠高分子電解質 The Development of Zwitterionic Hydrogel Electrolytes with Zwitterionic Additives via Mixture Design |
| 指導教授: |
溫添進
Wen, Ten-Chin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2023 |
| 畢業學年度: | 111 |
| 語文別: | 中文 |
| 論文頁數: | 86 |
| 中文關鍵詞: | 三成分混和物實驗設計 、雙電性水凝膠高分子電解質 、雙電性離子添加物 |
| 外文關鍵詞: | Three-component mixture design, Zwitterionic hydrogel electrolyte, Zwitterionic hydrogel with zwitterionic additives |
| 相關次數: | 點閱:98 下載:23 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
為了提高水凝膠高分子電解質的離子導電性和機械性能,本研究針對離子導電度實施了一系列三成分混合物實驗設計,包括共聚物系統、混摻添加物的共聚物和混摻雙電性離子修飾之添加物的共聚物系統。
首先,測量了以Polyethylene glycol diacrylate (PEGDA) 交聯,混合甲基丙烯酸硫代甜菜鹼 (SBMA) 、[2- (Methacryloyloxy) ethyl] trimethylammonium (META) 和2-Acrylamido-2-methyl-1-propanesulfonic acid (AMPS) 之共聚物系統的離子導電度,輔以機械性能的評估,決定了最適點SMA,其離子導電度為49.5 mS cm–1。接著,合成了三種添加物,球狀的SiO2、平面層狀的GO (氧化石墨烯) 和棒狀的HA (羥基磷灰石),以及經雙電性離子修飾之添加物 (zSi、zGO、zHA),在經FT-IR、XRD、NMR、TGA、SEM鑑定後,作為添加物分別與SMA共聚物主體混合。在第二個實驗設計中,最適點aSMA之離子導電度為66.1 mS cm–1,破裂應力和應變為0.2 MPa和79.5%。在第三個實驗設計中,最適點zaSMA之離子導電度為71.5 mS cm–1,破裂應力和應變為0.245 MPa和77%。
zaSMA在動態機械分析 (DMA) 中表現了最佳的彈性,亦在對稱式活性碳超級電容器中表現出最佳的電化學性能,在0.5 A g–1時具有超過140 F g–1的比電容,在功率密度為5211.87 W kg–1時具有18.73 Wh kg–1的能量密度。在循環壽命測試中,2 A g–1的電流密度下,經過5000圈定電流充放電循環後,電容保存率為95.6%。顯示其優異的性能以及混合物實驗設計方法之有效性。
To optimize the ionic conductivity and mechanical properties of hydrogel electrolytes, this study gave a series of three-component mixture design experiments on ionic conductivity of the copolymer system, copolymer host with additives and copolymer host with zwitterionic additives. In the first mixture design, the ionic conductivity of PEGDA crosslinked copolymer system containig sulfobetaine methacrylate (SBMA) , [2- (Methacryloyloxy) ethyl]trimethylammonium (META) , and 2-Acrylamido-2-methyl-1-propanesulfonic acid (AMPS) was measured, along with analyses of mechanical properties, an optimal point was determined and named SMA, with an ionic conductivity of 49.5 mS cm–1. Next, additives including spherical SiO2, planar graphene oxide (GO) , rod-shaped hydroxyapatite (HA) and their zwitterion-grafted versions (zSi, zGO, and zHA) being synthesized and characterized by FT-IR, XRD, TGA, NMR, SEM were mixed with SMA polymer host in the second and third mixture design respectively. In the second mixture design, an optimal point was determined and named aSMA with an ionic conductivity of 66.1 mS cm–1, breakout stress and strain of 0.2 MPa and 79.5%. In the third one, the optimal point, zaSMA, had ionic conductivity of 71.5 mS cm–1 ,breakout stress and strain of 0.245 MPa and 77%. zaSMA showed the best elasticity in dynamic mechanical analysis (DMA) and exhibited the best electrochemical performance with specific capacitance of over 140 F g–1 at 0.5 A g–1 and energy density of 18.73Wh kg–1 at power density of 5211.87 W kg–1 in carbon-symmetry supercapacitor. In cyclic life testing, zaSMA maintained a capacitance retention of 95.6% after 5000 cycles of galvanostatic charge/discharge at a current density of 2 A g–1.
[1]S. J. Moura, J. B. Siegel, D. J. Siegel, H. K. Fathy, and A. G. Stefanopoulou, "Education on vehicle electrification: battery systems, fuel cells, and hydrogen," in 2010 IEEE Vehicle Power and Propulsion Conference, 2010: IEEE, pp. 1-6.
[2]Y. Yan et al., "Tough Hydrogel Electrolytes for Anti‐Freezing Zinc‐Ion Batteries," Advanced Materials, vol. 35, no. 18, p. 2211673, 2023.
[3]S. B. Aziz, T. J. Woo, M. Kadir, and H. M. Ahmed, "A conceptual review on polymer electrolytes and ion transport models," Journal of Science: Advanced Materials and Devices, vol. 3, no. 1, pp. 1-17, 2018.
[4]Z. Wang et al., "Hydrogel electrolytes for flexible aqueous energy storage devices," Advanced Functional Materials, vol. 28, no. 48, p. 1804560, 2018.
[5]T. Xu et al., "Biopolymer-based hydrogel electrolytes for advanced energy storage/conversion devices: Properties, applications, and perspectives," Energy Storage Materials, 2022.
[6]V. P. Hoang Huy, S. So, and J. Hur, "Inorganic fillers in composite gel polymer electrolytes for high-performance lithium and non-lithium polymer batteries," Nanomaterials, vol. 11, no. 3, p. 614, 2021.
[7]J. B. Schlenoff, "Zwitteration: coating surfaces with zwitterionic functionality to reduce nonspecific adsorption," Langmuir, vol. 30, no. 32, pp. 9625-9636, Aug 19 2014, doi: 10.1021/la500057j.
[8]K. Qu et al., "Structures, properties, and applications of zwitterionic polymers," ChemPhysMater, 2022.
[9]L. D. Blackman, P. A. Gunatillake, P. Cass, and K. E. Locock, "An introduction to zwitterionic polymer behavior and applications in solution and at surfaces," Chemical Society Reviews, vol. 48, no. 3, pp. 757-770, 2019.
[10] F. Mo et al., "Zwitterionic sulfobetaine hydrogel electrolyte building separated positive/negative ion migration channels for aqueous Zn‐MnO2 batteries with superior rate capabilities," Advanced Energy Materials, vol. 10, no. 16, p. 2000035, 2020.
[11] Q. Fu, S. Hao, X. Zhang, H. Zhao, F. Xu, and J. Yang, "All-round supramolecular zwitterionic hydrogel electrolytes enabling environmentally adaptive dendrite-free aqueous zinc ion capacitors," Energy & Environmental Science, vol. 16, no. 3, pp. 1291-1311, 2023.
[12] Z. Hu and G. Chen, "Novel nanocomposite hydrogels consisting of layered double hydroxide with ultrahigh tensibility and hierarchical porous structure at low inorganic content," Advanced materials, vol. 26, no. 34, pp. 5950-5956, 2014.
[13] Z. Li, H. Zhang, P. Zhang, G. Li, Y. Wu, and X. Zhou, "Effects of the porous structure on conductivity of nanocomposite polymer electrolyte for lithium ion batteries," Journal of Membrane Science, vol. 322, no. 2, pp. 416-422, 2008.
[14] R. Liu, S. Liang, X.-Z. Tang, D. Yan, X. Li, and Z.-Z. Yu, "Tough and highly stretchable graphene oxide/polyacrylamide nanocomposite hydrogels," Journal of Materials Chemistry, vol. 22, no. 28, pp. 14160-14167, 2012.
[15] W. Jia et al., "Graphene oxide as a filler to improve the performance of PAN-LiClO4 flexible solid polymer electrolyte," Solid State Ionics, vol. 315, pp. 7-13, 2018.
[16] Z. Liu et al., "A mechanically durable and device-level tough Zn-MnO2 battery with high flexibility," Energy Storage Materials, vol. 23, pp. 636-645, 2019.
[17] P. Sun et al., "The improved effect of co-doping with nano-SiO 2 and nano-Al 2 O 3 on the performance of poly (methyl methacrylate-acrylonitrile-ethyl acrylate) based gel polymer electrolyte for lithium ion batteries," RSC Advances, vol. 5, no. 79, pp. 64368-64377, 2015.
[18] A. Nagajothi, R. Kannan, and S. Rajashabala, "Lithium ion conduction in plasticizer based composite gel polymer electrolytes with the addition of SiO2," Materials research innovations, vol. 22, no. 4, pp. 226-230, 2018.
[19] J. S. Park, Y.-C. Chung, S. D. Lee, J. W. Cho, and B. C. Chun, "Shape memory effects of polyurethane block copolymers cross-linked by celite," Fibers and Polymers, vol. 9, pp. 661-666, 2008.
[20] B. Scrosati, F. Croce, and L. Persi, "Impedance spectroscopy study of PEO‐based nanocomposite polymer electrolytes," Journal of the Electrochemical Society, vol. 147, no. 5, p. 1718, 2000.
[21] B. Kottathodi, I. Royaud, M. Poncot, D. Rouxel, N. Kalarikkal, and S. Thomas, "Polypropylene/silica nanocomposite membranes for lithium‐ion battery separator: Studies on interfacial tuning of pore structure, mechanical and thermal properties," SPE Polymers, 2023.
[22] W.-C. Li, R.-K. Chen, and T.-C. Wen, "The Role of Nano-Hydroxyapatite Bearing Zwitterion within Carboxylated Chitosan Hydrogel Electrolyte in Superior Performance of Supercapacitor," Available at SSRN 4193807.
[23] V. A. Afrifah, I. Phiri, L. Hamenu, A. Madzvamuse, K. S. Lee, and J. M. Ko, "Electrochemical properties of poly(2-acrylamido-2-methylpropane sulfonic acid) polyelectrolyte containing zwitterionic silica sulfobetaine for supercapacitors," Journal of Power Sources, vol. 479, 2020, doi: 10.1016/j.jpowsour.2020.228657.
[24] J. Wu, "Understanding the electric double-layer structure, capacitance, and charging dynamics," Chemical Reviews, vol. 122, no. 12, pp. 10821-10859, 2022.
[25] L. L. Zhang and X. Zhao, "Carbon-based materials as supercapacitor electrodes," Chemical Society Reviews, vol. 38, no. 9, pp. 2520-2531, 2009.
[26] L. M. Da Silva et al., "Reviewing the fundamentals of supercapacitors and the difficulties involving the analysis of the electrochemical findings obtained for porous electrode materials," Energy storage materials, vol. 27, pp. 555-590, 2020.
[27] A. J. Bard and L. R. Faulkner, "Fundamentals and applications," Electrochemical methods, vol. 2, no. 482, pp. 580-632, 2001.
[28] B. E. Conway, Electrochemical supercapacitors: scientific fundamentals and technological applications. Springer Science & Business Media, 2013.
[29] W. Schmickler, "Electrochemical Theory: Double Layer," in Reference Module in Chemistry, Molecular Sciences and Chemical Engineering: Elsevier, 2014.
[30] J. Martinez-Vega, Dielectric materials for electrical engineering. John Wiley & Sons, 2013.
[31] G. Raju, Electromagnetic field theory and Transmission lines. Pearson Education India, 2006.
[32] N. M. R. Chen. "Dielectric Polarization." https://eng.libretexts.org/Sandboxes/jlindsey_at_uccs.edu/Materials_Science_for_Electrical_Engineering/06%3A_Thermal_Optical/6.01%3A_Optical_Properties/6.1.01%3A_Dielectric_Polarization.
[33] B.-Y. Chang and S.-M. Park, "Electrochemical impedance spectroscopy," Annual Review of Analytical Chemistry, vol. 3, pp. 207-229, 2010.
[34] H. S. Magar, R. Y. Hassan, and A. Mulchandani, "Electrochemical impedance spectroscopy (EIS): Principles, construction, and biosensing applications," Sensors, vol. 21, no. 19, p. 6578, 2021.
[35] N. O. Laschuk, E. B. Easton, and O. V. Zenkina, "Reducing the resistance for the use of electrochemical impedance spectroscopy analysis in materials chemistry," RSC advances, vol. 11, no. 45, pp. 27925-27936, 2021.
[36] A. Mezzetti and W. Leibl, "Time-resolved infrared spectroscopy in the study of photosynthetic systems," Photosynthesis Research, vol. 131, pp. 121-144, 2017.
[37] A. C. Lazanas and M. I. Prodromidis, "Electrochemical Impedance Spectroscopy─ A Tutorial," ACS Measurement Science Au, 2023.
[38] Y. Jiang and J. Liu, "Definitions of pseudocapacitive materials: a brief review," Energy & Environmental Materials, vol. 2, no. 1, pp. 30-37, 2019.
[39] H. Scheffé, "Experiments with mixtures," Journal of the Royal Statistical Society: Series B (Methodological), vol. 20, no. 2, pp. 344-360, 1958.
[40] J. A. Cornell, Experiments with mixtures: designs, models, and the analysis of mixture data. John Wiley & Sons, 2011.
[41] R. McLean and V. Anderson, "Extreme vertices design of mixture experiments," Technometrics, vol. 8, no. 3, pp. 447-454, 1966.
[42] A. I. Khuri and J. A. Cornell, Response surfaces: designs and analyses. Routledge, 2018.
[43] N. R. Draper and H. Smith, Applied regression analysis. John Wiley & Sons, 1998.
[44] Cdang. "Braggs Law." https://commons.wikimedia.org/wiki/File:Braggs_Law.svg (accessed.
[45] Claudionico~commonswiki. "Electron Interaction with Matter." https://commons.wikimedia.org/wiki/File:Electron_Interaction_with_Matter.svg (accessed.
[46] S. Mosca, C. Conti, N. Stone, and P. Matousek, "Spatially offset Raman spectroscopy," Nature Reviews Methods Primers, vol. 1, no. 1, p. 21, 2021.
[47] S. Tabatabaei, A. Shukohfar, R. Aghababazadeh, and A. Mirhabibi, "Experimental study of the synthesis and characterisation of silica nanoparticles via the sol-gel method," in Journal of Physics: Conference Series, 2006, vol. 26, no. 1: IOP Publishing, p. 371.
[48] B. Paulchamy, G. Arthi, and B. Lignesh, "A simple approach to stepwise synthesis of graphene oxide nanomaterial," J Nanomed Nanotechnol, vol. 6, no. 1, p. 1, 2015.
[49] L.-H. Tseng, P.-H. Wang, W.-C. Li, C.-H. Lin, and T.-C. Wen, "Enhancing the ionic conductivity and mechanical properties of zwitterionic polymer electrolytes by betaine-functionalized graphene oxide for high-performance and flexible supercapacitors," Journal of Power Sources, vol. 516, p. 230624, 2021.
[50] C. F. Nising and S. Brase, "Recent developments in the field of oxa-Michael reactions," Chem Soc Rev, vol. 41, no. 3, pp. 988-99, Feb 7 2012, doi: 10.1039/c1cs15167c.
[51] B. R. Knowles, P. Wagner, S. Maclaughlin, M. J. Higgins, and P. J. Molino, "Silica nanoparticles functionalized with zwitterionic sulfobetaine siloxane for application as a versatile antifouling coating system," ACS applied materials & interfaces, vol. 9, no. 22, pp. 18584-18594, 2017.
[52] Y. Xie, C. A. S. Hill, Z. Xiao, H. Militz, and C. Mai, "Silane coupling agents used for natural fiber/polymer composites: A review," Composites Part A: Applied Science and Manufacturing, vol. 41, no. 7, pp. 806-819, 2010, doi: 10.1016/j.compositesa.2010.03.005.
[53] R. M. Pasternack, S. Rivillon Amy, and Y. J. Chabal, "Attachment of 3-(aminopropyl) triethoxysilane on silicon oxide surfaces: dependence on solution temperature," Langmuir, vol. 24, no. 22, pp. 12963-12971, 2008.
[54] G. S. Caravajal, D. E. Leyden, G. R. Quinting, and G. E. Maciel, "Structural characterization of (3-aminopropyl) triethoxysilane-modified silicas by silicon-29 and carbon-13 nuclear magnetic resonance," Analytical Chemistry, vol. 60, no. 17, pp. 1776-1786, 1988.
[55] N. S. K. Gunda, M. Singh, L. Norman, K. Kaur, and S. K. Mitra, "Optimization and characterization of biomolecule immobilization on silicon substrates using (3-aminopropyl)triethoxysilane (APTES) and glutaraldehyde linker," Applied Surface Science, vol. 305, pp. 522-530, 2014, doi: 10.1016/j.apsusc.2014.03.130.
[56] E. T. Vandenberg et al., "Structure of 3-Aminopropyl Triethoxy Silane on Silicon-Oxide," (in English), J Colloid Interf Sci, vol. 147, no. 1, pp. 103-118, Nov 1991, doi: Doi 10.1016/0021-9797(91)90139-Y.
[57] C. M. Laureano-Anzaldo, N. B. Haro-Mares, J. C. Meza-Contreras, J. R. Robledo-Ortíz, and R. Manríquez-González, "Chemical modification of cellulose with zwitterion moieties used in the uptake of red Congo dye from aqueous media," Cellulose, vol. 26, pp. 9207-9227, 2019.
[58] A. Guiseppi-Elie, "Electroconductive hydrogels: synthesis, characterization and biomedical applications," Biomaterials, vol. 31, no. 10, pp. 2701-2716, 2010.
[59] C. Y. Panicker, H. T. Varghese, D. Philip, and H. I. Nogueira, "FT-IR, FT-Raman and SERS spectra of pyridine-3-sulfonic acid," Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, vol. 64, no. 3, pp. 744-747, 2006.
[60] A. J. Casella, T. G. Levitskaia, J. M. Peterson, and S. A. Bryan, "Water O–H stretching Raman signature for strong acid monitoring via multivariate analysis," Analytical chemistry, vol. 85, no. 8, pp. 4120-4128, 2013.
[61] H. Edwards, D. Brown, J. Dale, and S. Plant, "Raman spectroscopic studies of acid dissociation in sulfonated polystyrene resins," Journal of Molecular Structure, vol. 595, no. 1-3, pp. 111-125, 2001.
[62] J. Qiu, X. Li, and X. Qi, "Raman spectroscopic investigation of sulfates using mosaic grating spatial heterodyne raman spectrometer," IEEE Photonics Journal, vol. 11, no. 5, pp. 1-12, 2019.
[63] Y. Xu et al., "Efficient frequency conversion and the crossing-pump effect of stimulated Raman scattering in an aqueous sodium sulfate solution," Optics Express, vol. 30, no. 25, pp. 45043-45053, 2022.
[64] K. Ben Mabrouk, T. H. Kauffmann, H. Aroui, and M. D. Fontana, "Raman study of cation effect on sulfate vibration modes in solid state and in aqueous solutions," Journal of Raman Spectroscopy, vol. 44, no. 11, pp. 1603-1608, 2013.
[65] K. Omori, "Infrared diffraction and the far infrared spectra of anhydrous sulfates," Mineralogical Journal, vol. 5, no. 5, pp. 334-354, 1968.
[66] M. D. Fontana, K. B. Mabrouk, and T. H. Kauffmann, "Raman spectroscopic sensors for inorganic salts," Spectrosc. Prop. Inorg. Organomet. Compd, vol. 44, pp. 40-67, 2013, doi: 10.1039/9781849737791-00040.
[67] J. Sun, Z. Xu, W. Li, and X. Shen, "Effect of nano-SiO2 on the early hydration of alite-sulphoaluminate cement," Nanomaterials, vol. 7, no. 5, p. 102, 2017.
[68] M. Pourghasemi‐Lati, F. Shirini, M. Alinia‐Asli, and M. Rezvani, "Butane‐1‐sulfonic acid immobilized on magnetic Fe3O4@ SiO2 nanoparticles: A novel and heterogeneous catalyst for the one‐pot synthesis of barbituric acid and pyrano [2, 3‐d] pyrimidine derivatives in aqueous media," Applied Organometallic Chemistry, vol. 32, no. 10, p. e4455, 2018.
[69] E.-P. Ng, S. N. M. Subari, O. Marie, R. R. Mukti, and J.-C. Juan, "Sulfonic acid functionalized MCM-41 as solid acid catalyst for tert-butylation of hydroquinone enhanced by microwave heating," Applied Catalysis A: General, vol. 450, pp. 34-41, 2013.
[70] R. Siburian, C. Simanjuntak, M. Supeno, S. Lumbanraja, and H. Sihotang, "New route to synthesize of graphene nano sheets," 2018.
[71] X. Zhao, N. Huebsch, D. J. Mooney, and Z. Suo, "Stress-relaxation behavior in gels with ionic and covalent crosslinks," Journal of applied physics, vol. 107, no. 6, p. 063509, 2010.
[72] A. Boonmahitthisud, L. Nakajima, K. D. Nguyen, and T. Kobayashi, "Composite effect of silica nanoparticle on the mechanical properties of cellulose‐based hydrogels derived from cottonseed hulls," Journal of Applied Polymer Science, vol. 134, no. 10, 2017.
[73] C. Dannert, B. T. Stokke, and R. S. Dias, "Nanoparticle-hydrogel composites: from molecular interactions to macroscopic behavior," Polymers, vol. 11, no. 2, p. 275, 2019.
[74] G. Gong, J. Wu, Y. Lin, C. Chan, and M. Yang, "Dynamic rheological behavior of isotactic polypropylene filled with nano-calcium carbonate modified by stearic acid coating," Journal of Macromolecular Science®, vol. 48, no. 2, pp. 329-343, 2009.