簡易檢索 / 詳目顯示

研究生: 劉孟瑀
Liu, Meng-Yu
論文名稱: 半導體製造業黃光區勞工揮發性有機化合物之長期暴露與健康危害風險評估
Long-term exposure and health risk assessments of volatile organic compounds exposed to photolithography process workers in a semiconductor manufacturing factory
指導教授: 蔡朋枝
Tsai, Perng-Jy
學位類別: 碩士
Master
系所名稱: 醫學院 - 環境醫學研究所
Department of Environmental and Occupational Health
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 121
中文關鍵詞: 半導體製造業黃光區揮發性有機化合物貝氏統計決策分析多重化學物質暴露評估致癌風險評估
外文關鍵詞: Semiconductor manufacturing factory, Photolithography process, VOCs, Bayesian decision analysis, Exposure assessment of multiple compounds, Cancer risk assessment
相關次數: 點閱:117下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 一般而言,半導體製造業作業場所空氣中有害物濃度可能遠低於職業暴露限值,但製程中會使用複雜的化學物質,伴隨多種副產物的產生,其多重化學暴露之健康危害仍值得重視。特別是黃光區廣泛使用多種揮發性有機化合物 (Volatile organic compounds, VOCs),其中部分已經被證實會對人體造成不良的健康效應。唯目前作業環境監測方式仍然以單日量測單一化學物質為主,相反的,針對多重化學物質長期暴露評估之研究仍有限,如何有效解決以上問題有其急迫性與重要性。
    本研究選取半導體製造業黃光區為研究對象,分為五個區域 (A、B、C、D、E)採樣,目標監測化學物質包括18種VOCs,並針對日常作業及預防維修保養作業 (Preventive maintenance process, PM)與三種作業型態進行探討。採樣使用不鏽鋼熱脫附管填充吸附劑Carbograph5TD 60/80進行採樣,並以熱脫附儀搭配火焰離子化偵測器氣相層析儀 (automatic thermal desorption system coupled with gas chromatography flame ionization detector, ATD-GC/FID)分析,同時利用直讀式光離子化檢測器(Photoionization detector, PID)量測,以瞭解VOCs濃度及其分布情形。本研究利用前述結果,針對日常作業時建立化學物質的暴露推估模式及其長期資料庫,再結合貝氏統計決策分析,推估長期多重化學物質之暴露及致癌風險,及提供改善建議。本研究將同時利用採樣結果進行PM作業最高瞬間暴露及短時間暴露濃度的評估,及降低暴露濃度之可行方案。
    本研究發現日常作業區域採樣偵測到的物質濃度都在ppb等級,主要暴露物質為PGME、PGMEA、乳酸乙酯、乙酸丁酯,未被偵測到的物質包括甲醇、TMAH、丙酮、甲氧苯、異丙醇、環己酮;主要污染暴露區域為E區。多重化學物質暴露評估比單一物質之暴露評估更具代表性,不考慮化學物質之拮抗與協同作用時,其健康效應結果約為10-3,考慮化學物質不同健康效應時約介於10-5~10-3之間。本研究以多重化學物質暴露評估的角度探討PID之管制值的結果,若以0.01為總暴露基準:A區PID量測數值不得超過180 ppb;B/C區為118 ppb;而D/E區為153 ppb,以區域來劃分制訂管制值會比整個廠區採用相同數值進行管制更具有代表性,且不會低估高污染區域之健康效應。暴露濃度推估時,以PID數據及產能資料當作替代暴露指標,其推估結果皆具有良好的線性關係及適用性 (R2大於0.65)。將推估結果以貝氏統計分析進行評估,長期多重化學暴露之暴露等級會落在1、2、3,Total exposure值皆會小於7.5*10-3,顯示勞工之長期暴露不至於產生嚴重危害及廠區日常作業有良好的控制措施。致癌風險的部分,男性及女性技術員或助理工程師/工程師在三個年齡層之計算結果約為10-7,小於可接受之風險10-6,將結果以貝氏統計決策分析進行評估,仍然會有少許機會超過本研究所訂定之10-6之風險。
    本研究PM作業結果之污染逸散情況比日常作業高出很多,且PID濃度會達到ppm等級,勞工主要暴露污染來源均來自於PM作業,在有使用溶劑之作業程序會出現高濃度暴露,本研究發現丙酮之瞬間暴露濃度最高可達504.68 ppm;短時間暴露濃度最高達96.33 ppm。本研究建議PM作業時應使用可攜式局部排氣系統、執行PM作業人員應全程配戴防護具、減少溶劑使用量,以減少勞工之暴露,並應立即將使用後之廢棄物密封於廢棄袋中,以免化學物質逸散造成二次污染。

    The concentration of air pollutants found in the semiconductor manufacturing industry might be much lower than the occupational exposure limit, but the use of complex composition and toxic chemicals and by-products generated during process still cause many concerns. Most chemicals widely used in photolithography process are VOCs. Some VOCs are known to be hazardous to human health, so they might cause adverse health effects on workers after long-term exposure. The current adopted method for environmental monitoring simply focuses on monitoring of single compound during one single day, which clearly is inadequate for assessing workers' long-term multiple chemical exposures and describing their exposure profiles. Therefore, the development of technologies for solving the above mentioned problems have become urgent and important.
    The purpose of this study is to understand the concentration and concentration profile of VOCs during the routine operation of five areas (A: B: C: D: E) and PM periods in photolithography process. Samples were collected by using a direct-reading instrument (photoionization detector, PID) and a stainless steel sorbent tube filled with Carbograph 5TD 60/80. Eighteen VOCs were measured by automatic thermal desorption system coupled with gas chromatography flame ionization detector (ATD-GC/FID). In this study, the monitoring data and productivity was used to develop predictive models, then the Bayesian decision analysis was adopted to evaluate long-term exposure and cancer risk. Meanwhile, assessing the concentrations for both the short-term exposure and instantaneous exposure are also included in this study.
    In this study, the thermal desorption monitoring is suitable for the photolithography process for assessing exposures. All of the detected concentration during routine operation is at ppb level, and the results during PM periods are higher than routine operation can be reached to ppm level, so workers’ exposures are affected by PM.
    The multiple VOCs assessment is more representative than a single compound for assessing workers’ exposures. And the PID monitoring data and productivity are good surrogate data for assessing multiple chemical exposures. Using Bayesian decision analysis would be a suitable tool for conducting long-term exposure and cancer risk.
    Workers’ exposures are affected by PM period, so the control methods in PM periods have become important.

    總目錄 摘要 I Extended Abstract II 致謝 V 目錄 VI 表目錄 X 圖目錄 XIII 一、 前言 1 1-1研究背景 1 1-2研究目的 3 二、 文獻回顧 4 2-1半導體製造業黃光區製程、使用化學物質與勞工暴露 4 2-1-1製程及使用之化學物質及其危害 4 2-1-2勞工作業型態與暴露情形 6 2-2揮發性有機化合物 (Volatile organic conpounds, VOCs)與其偵測方法 10 2-2-1何謂揮發性有機化合物 10 2-2-2揮發性有機化合物之環境監測方法 10 2-2-3直讀式光離子化檢測器 (Photoionization detector, PID) 12 2-3暴露與健康危害風險評估技術發展之現況 14 2-3-1作業環境監測技術在暴露評估的角色 14 2-3-2貝氏統計決策分析技術 (Bayesian Decision Analysis) 16 2-3-3健康危害風險評估 18 三、 研究材料與方法 22 3-1研究架構及流程 22 3-2現場訪視及資訊調查 24 3-3空氣中有害物暴露評估 25 3-3-1日常作業空氣中有害物暴露評估 25 3-3-2預防維修保養 (PM)作業空氣中有害物暴露評估 25 3-3-3直讀式儀器光離子化檢測器測定 26 3-4採樣策略及樣本採集 26 3-4-1採樣方法 26 3-4-2區域採樣採集樣本數 27 3-4-3採樣位置 27 3-4-4儀器校正 28 3-4-5採樣管採樣前處理 29 3-4-6樣本保存 29 3-5樣本分析設備、條件與方法 29 3-5-1分析化合物基本特性及容許濃度標準 29 3-5-2分析使用之儀器 31 3-5-3化合物定性分析 31 3-5-4分析儀器條件設定 32 3-5-5樣本分析 34 3-6樣本分析品質保證與品質管制 (Quality Assurance / Quality Control) 34 3-6-1配置標準品及檢量線 35 3-6-2偵測極限 36 3-6-3滯留時窗 (Retention time windows)的建立 37 3-6-4回收率測試 38 3-6-5精密度測試 39 3-6-6空白樣本分析 39 3-6-7品質管制確定 40 3-7繪製等濃度曲線圖 40 3-8多重化學物暴露評估 41 3-8-1不考慮物質之健康效應 42 3-8-2考慮物質之健康效應 42 3-9暴露濃度推估模式建立 43 3-9-1區域採樣濃度與PID測定值之相關模式推估 44 3-9-2以產能資料進行相關模式推估並評估可行性 44 3-10致癌風險評估 45 3-11 長期多重化學物質暴露與致癌風險評估 48 3-11-1以濃度模式推估多重化學物質暴露評估 48 3-11-2以產能模式推估多重化學物質評估 48 3-11-3致癌風險評估 48 3-12作業場所 PID管制值之設定方式 49 3-13推估PM作業瞬間暴露濃度 (Ceiling)及短時間容許濃度 (STEL) 49 四、 結果與討論 51 4-1日常區域採樣 51 4-1-1區域採樣結果與暴露來源鑑定 51 4-1-2等濃度曲線圖與逸散源 63 4-1-3多重化學物質暴露評估 65 4-2 PID監測結果 66 4-2-1監測結果 66 4-2-2等濃度曲線圖 69 4-3暴露濃度推估模式 79 4-3-1日常區域採樣濃度與PID測值之推估模式 79 4-3-2產能資料與PID測值之推估模式 83 4-4多重化學物質長期暴露與致癌風險評估 83 4-4-1日常區域採樣濃度與PID測值之推估模式之暴露評估 83 4-4-2日常區域採樣濃度與產能資料之多重化學物質暴露評估 86 4-4-3致癌風險評估 88 4-5 作業場所PID管制值設定之探討 96 4-6預防維修保養 (PM)作業採樣結果 97 4-6-1區域採樣結果 97 4-6-2 PID監測結果 99 4-6-3 PM作業瞬間暴露濃度 (Ceiling)及短時間暴露濃度 (STEL)推估 106 五、 結論與建議 108 5-1結論 108 5-2建議 109 六、 研究限制 109 七、 參考文獻 110 八、 附錄 114 表目錄 表2-1黃光區主要使用之化學物質 6 表2-2半導體製造業勞工的作業型態及暴露情形 8 表2-3半導體製造業暴露評估之研究 9 表2-4監測環境中揮發性有機化合物方法之優缺點 12 表2-5 AIHA建議描述相似暴露群真實暴露實態所需之樣本數 15 表2-6 AIHA建議之暴露等級分類 18 表3-1勞工作業型態及工作情形 25 表3-2各個化合物的基本資料及容許濃度標準 30 表3-3 儀器採用DB-1管柱之物質分析滯留時間 32 表3-4 儀器採用DB-WAX管柱之物質分析滯留時間 32 表3-5分析儀器的設定條件 (分析管柱:DB-1) 33 表3-6分析儀器的設定條件 (分析管柱:DB-WAX) 34 表3-7各個物質檢量線線性及濃度範圍 35 表3-8各個物質之偵測極限 36 表3-9各個物質之滯留時窗 37 表3-10各個物質之回收率 38 表3-11各個物質之精密度 39 表3-12各物質計算多重化學物質暴露評估使用之容許濃度標準 42 表3-13 ACGIH訂定各物質TLV-TWA基準之健康效應分類 43 表3-14計算致癌風險使用之參數 47 表4-1日常區域採樣結果-1 53 表4-2日常區域採樣結果-2 54 表4-3日常區域採樣結果-3 55 表4-4日常區域採樣結果-4 56 表4-5日常區域採樣結果-5 57 表4-6日常區域採樣結果-6 58 表4-7日常區域採樣平均濃度與外氣平均濃度統整 59 表4-8日常區域採樣平均濃度以機型分類與外氣平均濃度統整 60 表4-9主要機台使用的原物料成分統整 61 表4-10物質來源之探討整理 62 表4-11多重化學物質暴露評估結果 65 表4-12 PID監測結果 67 表4-13比較有無PM狀況下之PID濃度值 68 表4-14 PID濃度值與日常區域採樣濃度於A區之相關模式推估結果 80 表4-15 PID濃度值與日常區域採樣濃度於D/E區之相關模式推估結果 81 表4-16 PID濃度值與日常區域採樣濃度於B/C區之相關模式推估結果 82 表4-17 PID濃度值與產能資料相關模式推估結果 83 表4-18計算致癌風險評估使用之參數 89 表4-19 A區實際採樣值及PID轉換值計算苯之致癌風險 90 表4-20 B/C區實際採樣值及PID轉換值計算苯之致癌風險 91 表4-21 D/E區實際採樣值及PID轉換值計算苯之致癌風險 92 表4-22 PID管制值之結果 96 表4-23 PM採樣結果 98 表4-24 PM PID監測結果─位置18週保 100 表4-25 PM PID監測結果─位置16週保 101 表4-26 PM PID監測結果─位置16季保及月保 102 表4-27 PM PID監測結果─位置17週保及季保 103 表4-28 PM PID監測結果─位置21、14、4、11季保 104 表4-29 PM作業A類型機台瞬間暴露濃度 (Ceiling)及短時間容許濃度 (STEL)推估 107 表4-30 PM作業B類型機台瞬間暴露濃度 (Ceiling)及短時間容許濃度 (STEL)推估 107 圖目錄 圖3-1研究流程圖 23 圖3-2 採樣位置配置圖 28 圖4-1第一次日常區域採樣Total concentration等濃度曲線圖 63 圖4-2第二次日常區域採樣Total concentration等濃度曲線圖 63 圖4-3第三次日常區域採樣Total concentration等濃度曲線圖 63 圖4-4第四次日常區域採樣Total concentration等濃度曲線圖 64 圖4-5第五次日常區域採樣Total concentration等濃度曲線圖 64 圖4-6第六次日常區域採樣Total concentration等濃度曲線圖 64 圖4-7六次日常區域採樣Total concentration平均值等濃度曲線圖 64 圖4-8 PID濃度之等濃度曲線圖 (長期監測1) 70 圖4-9 PID濃度之等濃度曲線圖 (長期監測2) 70 圖4-10 PID濃度之等濃度曲線圖 (長期監測4) 70 圖4-11 PID濃度之等濃度曲線圖 (長期監測7) 70 圖4-12 PID濃度之等濃度曲線圖 (長期監測10) 71 圖4-13 PID濃度之等濃度曲線圖 (長期監測12) 71 圖4-14 PID濃度之等濃度曲線圖 (長期監測14) 71 圖4-15 PID濃度之等濃度曲線圖 (區域採樣1) 71 圖4-16 PID濃度之等濃度曲線圖 (區域採樣2) 72 圖4-17 PID濃度之等濃度曲線圖 (區域採樣5) 72 圖4-18 10次沒有PM狀況下平均濃度之等濃度曲線圖 72 圖4-19 PID濃度之等濃度曲線圖 (長期監測3)–D區 73 圖4-20 PID濃度之等濃度曲線圖 (長期監測5)–E區 73 圖4-21 PID濃度之等濃度曲線圖 (長期監測6)–A區 73 圖4-22 PID濃度之等濃度曲線圖 (長期監測8)–D區 73 圖4-23 PID濃度之等濃度曲線圖 (長期監測9)–A區 74 圖4-24 PID濃度之等濃度曲線圖 (長期監測11)–A區 74 圖4-25 PID濃度之等濃度曲線圖 (長期監測13)–D區 74 圖4-26 PID濃度之等濃度曲線圖 (區域採樣3)–A區 74 圖4-27 PID濃度之等濃度曲線圖 (區域採樣4)–A區 75 圖4-28 PID濃度之等濃度曲線圖 (區域採樣6)–E區 75 圖4-29 10次PM狀況下PID平均濃度之等濃度曲線圖 75 圖4-30第一次區域採樣總濃度 (左)與PID濃度 (右)之等濃度曲線圖之比較 76 圖4-31第二次區域採樣總濃度 (左)與PID濃度 (右)之等濃度曲線圖之比較 76 圖4-32第三次區域採樣總濃度 (左)與PID濃度 (右)之等濃度曲線圖之比較 77 圖4-33第四次區域採樣總濃度 (左)與PID濃度 (右)之等濃度曲線圖之比較 77 圖4-34第五次區域採樣總濃度 (左)與PID濃度 (右)之等濃度曲線圖之比較 78 圖4-35第六次區域採樣總濃度 (左)與PID濃度 (右)之等濃度曲線圖之比較 78 圖4-36 A區Total exposure之貝氏統計分析結果 85 圖4-37 B/C區Total exposure之貝氏統計分析結果 85 圖4-38 D/E區Total exposure之貝氏統計分析結果 85 圖4-39利用產能推估之A區Total exposure貝氏統計分析結果 87 圖4-40利用產能推估之B/C區Total exposure貝氏統計分析結果 87 圖4-41利用產能推估之D/E區Total exposure貝氏統計分析結果 87 圖4-42 A區男性致癌風險評估之貝氏統計分析結果 93 圖4-43 A區女性致癌風險評估之貝氏統計分析結果 93 圖4-44 B/C區男性致癌風險評估之貝氏統計分析結果 94 圖4-45 B/C區女性致癌風險評估之貝氏統計分析結果 94 圖4-46 D/E區男性致癌風險評估之貝氏統計分析結果 95 圖4-47 D/E區女性致癌風險評估之貝氏統計分析結果 95 圖4-48 PM PID監測結果─位置18週保趨勢圖 100 圖4-49 PM PID監測結果─位置16週保趨勢圖 101 圖4-50 PM PID監測結果─位置16季保及月保趨勢圖 102 圖4-51 PM PID監測結果─位置17週保及季保趨勢圖 103 圖4-52 PM PID監測結果─位置21、14季保趨勢圖 105 圖4-53 PM PID監測結果─位置4、11季保趨勢圖 105 圖8-1甲醇檢量線 114 圖8-2 TMAH檢量線 114 圖8-3丙酮檢量線 114 圖8-4 2-丁酮檢量線 114 圖8-5正己烷檢量線 114 圖8-6苯檢量線 114 圖8-7甲苯檢量線 115 圖8-8乙酸丁酯檢量線 115 圖8-9 2-庚酮檢量線 115 圖8-10甲氧苯檢量線 115 圖8-11乙酸乙酯檢量線 115 圖8-12異丙醇檢量線 115 圖8-13 PGME檢量線 116 圖8-14乙酸戊酯檢量線 116 圖8-15 PGMEA檢量線 116 圖8-16環己酮檢量線 116 圖8-17乳酸乙酯檢量線 116 圖8-18 NMP檢量線 116 圖8-19 A區2-丁酮之相關模式推估 117 圖8-20 A區正己烷之相關模式推估 117 圖8-21 A區苯之相關模式推估 117 圖8-22 A區甲苯之相關模式推估 117 圖8-23 A區乙酸丁酯之相關模式推估 117 圖8-24 A區乙酸乙酯之相關模式推估 117 圖8-25 A區PGME之相關模式推估 118 圖8-26 A區PGMEA之相關模式推估 118 圖8-27 A區乳酸乙酯之相關模式推估 118 圖8-28 D/E區2-丁酮之相關模式推估 118 圖8-29 D/E區正己烷之相關模式推估 118 圖8-30 D/E區苯之相關模式推估 118 圖8-31 D/E區甲苯之相關模式推估 119 圖8-32 D/E區乙酸丁酯之相關模式推估 119 圖8-33 D/E區乙酸乙酯之相關模式推估 119 圖8-34 D/E區乳酸乙酯之相關模式推估 119 圖8-35 B/C區正己烷之相關模式推估 119 圖8-36 B/C區苯之相關模式推估 119 圖8-37 B/C區甲苯之相關模式推估 120 圖8-38 B/C區乙酸丁酯之相關模式推估 120 圖8-39 B/C區乙酸乙酯之相關模式推估 120 圖8-40 B/C區PGME之相關模式推估 120 圖8-41 B/C區PGMEA之相關模式推估 120 圖8-42 A區產能之相關模式推估 120 圖8-43 D/E區產能之相關模式推估 121 圖8-44 B/C區產能之相關模式推估 121 圖8-45 A區PID管制值設定 121 圖8-46 B/C區PID管制值設定 121 圖8-47 D/E區PID管制值設定 121

    American Conference of Governmental Industrial Hygienists (ACGIH) Documentation of the Threshold Limit Values and Biological Exposure Indices
    Banerjee S, Ramachandran G, Vadali M, Sahmel J. 2014. Bayesian hierarchical framework for occupational hygiene decision making. Ann Occup Hyg 58:1079-1093.
    Benitez J. 1993. Process engineering and design for air pollution control. PTR Prentice-Hall Inc New Jersey.
    Bullock WH, Ignacio JS. 2006. A strategy for assessing and managing occupational exposures:AIHA.
    Chein H, Chen TM. 2003. Emission characteristics of volatile organic compounds from semiconductor manufacturing. Journal of the Air & Waste Management Association 53:1029-1036.
    Coffey CC, Pearce TA. 2010. Direct-reading methods for workplace air monitoring. Journal of Chemical Health and Safety 17:10-21.
    Covello VT, Merkhoher MW. 1993. Risk assessment methods: Approaches for assessing health and environmental risks:Springer Science & Business Media.
    Des TA, k VS. 1992. Sampling and analysis of light htdrocarbons(c1~c4)-a review. American IND HYG ASSOCJ Vol52, No3.
    Duarte K, Justino CIL, Freitas AC, Duarte AC, Rocha-Santos TAP. 2014. Direct-reading methods for analysis of volatile organic compounds and nanoparticles in workplace air. TrAC Trends in Analytical Chemistry 53:21-32.
    Foster PM, Creasy DM, Foster JR, Thomas LV, Cook MW, Gangolli SD. 1983. Testicular toxicity of ethylene glycol monomethyl and monoethyl ethers in the rat. Toxicology and applied pharmacology 69:385-399.
    Frist BG. 1996. Exposure characterization of preventative maintenance activities on semiconductor manufacturing equipment.
    Guenther A, Hewitt CN, Erickson D, Fall R, Geron C, Graedel T, et al. 1995. A global model of natural volatile organic compound emissions. Journal of Geophysical Research: Atmospheres (1984–2012) 100:8873-8892.
    Hewett P, Logan P, Mulhausen J, Ramachandran G, Banerjee S. 2006. Rating exposure control using bayesian decision analysis. Journal of occupational and environmental hygiene 3:568-581.
    International Agency for Research on Cancer (IARC) List of Classifications
    Jones AP. 1999. Indoor air quality and health. Atmospheric environment 33:4535-4564.
    Kaukiainen A, Vehmas T, Rantala K, Nurminen M, Martikainen R, Taskinen H. 2004. Results of common laboratory tests in solvent-exposed workers. International archives of occupational and environmental health 77:39-46.
    Kennedy ER. 2010. Introduction to work place air sampling. Journal of Chemical Health and Safety 17:4-9.
    Lee EG, Kim SW, Feigley CE, Harper M. 2013. Exposure models for the prior distribution in bayesian decision analysis for occupational hygiene decision making. Journal of occupational and environmental hygiene 10:97-108.
    Lee M, Waitzkin H. 2012. A heroic struggle to understand the risk of cancers among workers in the electronics industry: The case of samsung. International journal of occupational and environmental health 18:89-91.
    Leidel NA. 1977. Occupational exposure sampling strategy manual.
    Lo C-C. 2001. Characteristic study of vocs in the surrounding area of an oil storage and pumping station. A thesis of master degree of the Graduate Institute of Environmental Engineering, National Sun Yat-Sen University:36-39.
    Marano DE, Boice JD, Jr., Munro HM, Chadda BK, Williams ME, McCarthy CM, et al. 2010. Exposure assessment among us workers employed in semiconductor wafer fabrication. Journal of occupational and environmental medicine / American College of Occupational and Environmental Medicine 52:1075-1081.
    Moen BE, Hollund BE. 2000. Exposure to organic solvents among car painters in bergen, norway. Annals of Occupational Hygiene 44:185-189.
    NIOSH Manual of Analytical Methods的2549 Volatile Organic Compounds (Screening)
    Park H, Jang JK, Shin JA. 2011. Quantitative exposure assessment of various chemical substances in a wafer fabrication industry facility. Safety and health at work 2:39-51.
    Park SH, Shin JA, Park HH, Yi GY, Chung KJ, Park HD, et al. 2011. Exposure to volatile organic compounds and possibility of exposure to by-product volatile organic compounds in photolithography processes in semiconductor manufacturing factories. Safety and health at work 2:210-217.
    Radian. 1978. Control techniques for volatile organic emissions from stationary sources.
    Ramachandran G. 2005. Occupational exposure assessment for air contaminants:CRC Press.
    Smith MT, Jones RM, Smith AH. 2007. Benzene exposure and risk of non-hodgkin lymphoma. Cancer epidemiology, biomarkers & prevention : a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology 16:385-391.
    Srivastava A, Joseph A, Patil S, More A, Dixit R. 2005. Air toxics in ambient air of delhi. Atmospheric Environment 39:59-71.
    Symanski E, Chan W, Chang C-C. 2001. Mixed-effects models for the evaluation of long-term trends in exposure levels with an example from the nickel industry. Annals of Occupational Hygiene 45:71-81.
    Torres C, Jones R, Boelter F, Poole J, Dell L, Harper P. 2014. A model to systematically employ professional judgment in the bayesian decision analysis for a semiconductor industry exposure assessment. Journal of occupational and environmental hygiene 11:343-353.
    Uusitalo L. 2007. Advantages and challenges of bayesian networks in environmental modelling. Ecological Modelling 203:312-318.
    Vadali M, Ramachandran G, Mulhausen J. 2009. Exposure modeling in occupational hygiene decision making. Journal of occupational and environmental hygiene 6:353-362.
    Wang J, Chen J. 1993. Acute and chronic neurological symptoms among paint workers exposed to mixtures of organic solvents. Environmental research 61:107-116.
    Weschler CJ, Shields HC. 1997. Potential reactions among indoor pollutants. Atmospheric Environment 31:3487-3495.
    Woskie SR, Hammond SK, Hines CJ, Hallock MF, Kenyon E, Schenker MB. 2000. Personal fluoride and solvent exposures, and their determinants, in semiconductor manufacturing. Applied occupational and environmental hygiene 15:354-361.
    Wu CH, Feng CT, Lo YS, Lin TY, Lo JG. 2004. Determination of volatile organic compounds in workplace air by multisorbent adsorption/thermal desorption-gc/ms. Chemosphere 56:71-80.
    Yeh M-p, Wu R-T, Yu J-P. 2000. Probing airborne chemicals of semiconductor work place using gas chromatography mass spectrometry.
    張振平, 宋隆佑, 朱振群, 林宜長. 2000. 半導體維修作業勞工有害氣體溢散調查, 勞工安全衛生研究季刊
    陳俊勳, 張承明. 2002. 光電廠危害預防研究, 行政院勞工委員會勞工安全衛生研究所
    楊秀宜, 張大元. 2014半導體封裝測試製程安全衛生調查研究, 行政院勞工委員會勞工安全衛生研究所
    汪禧年, 謝瑞豪. 2011.半導體黃光製程有害物暴露及異味調查研究, 行政院勞工委員會勞工安全衛生研究所
    張俊彥. 1997. 積體電路製程及設備技術手冊, 經濟部技術處
    揮發性有機物空氣汙染管制及排放標準,2013
    健康風險評估技術規範 2011
    揮發性有機物洩漏測定方法-火焰離子化偵測法 2011
    層析檢測方法總則 2002
    環境檢驗方法偵測極限測定指引 2004
    環境檢驗檢量線製備及查核指引 2005職業安全衛生法 2013
    作業環境監測指引 2015
    半導體製程設備安全基準(SEMI-S2)

    無法下載圖示 校內:2021-07-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE