簡易檢索 / 詳目顯示

研究生: 謝孟儒
Hsieh, Meng-Ru
論文名稱: 粒線體去偶合蛋白在低溫保護神經細胞的作用中所扮演之角色
The role of mitochondrial uncoupling proteins in cold exposure-induced neuroprotection
指導教授: 莊季瑛
Chuang, Jih-Ing
學位類別: 碩士
Master
系所名稱: 醫學院 - 生理學研究所
Department of Physiology
論文出版年: 2011
畢業學年度: 99
語文別: 英文
論文頁數: 66
中文關鍵詞: 低溫去偶合蛋白神經保護
外文關鍵詞: cold exposure, MPP+, uncoupling protein
相關次數: 點閱:77下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 全身性或選擇性地降低腦部溫度被證實具有改善腦部創傷的動物及病患的治療方式,雖然這些研究證實低溫具有保護作用,但低溫所調控的保護機制仍未被完全探討明瞭。過去的研究中發現,當細胞或動物處在低溫刺激下,大腦粒線體去偶合蛋白質(UCPs)與冷誘導核醣核酸結合蛋白(CIRBP)的表現量會顯著增加。此外,研究證實在以1-methyl-4 phenylpyridinium (MPP+) 誘發的帕金森氏症實驗模式中,大量表現去偶合蛋白質能有效降低因MPP+造成的氧化壓力傷害及神經細胞死亡。因此在本研究中,我們將探討低溫是否透過提高去偶合蛋白及冷誘導核醣核酸結合蛋白的表現量,達到保護神經細胞免於MPP+造成的細胞死亡。首先,我們發現將人類SK-N-SH神經母細胞瘤細胞或初代皮質神經細胞在MPP+處理後低溫培養(32 °C) 24小時,而非MPP+處理前低溫培養,可以顯著降低MPP+造成的細胞死亡。此外,我們發現經過低溫處理24小時後,即可顯著誘發去偶合蛋白4與5以及冷誘導核醣核酸結合蛋白的基因與蛋白質表現量上升,而去偶合蛋白2的基因與蛋白質表現量則顯著降低。若將MPP+和低溫同時處理,則更顯著地增加MPP+ 所提升的去偶合蛋白4與降低的去偶合蛋白2的基因表現量。為了更進一步探究去偶合蛋白與冷誘導核醣核酸結合蛋白在低溫保護神經細胞的作用中是否扮演重要的角色,利用慢病毒基因載體系統將shRNA送入SK-N-SH細胞中建立持續表達低量去偶合蛋白與冷誘導核醣核酸的細胞株,結果顯示當降低去偶合蛋白4或5或冷誘導核醣核酸結合蛋白的表現量時,皆會抑制低溫所調控的神經保護作用。此外,我也發現低溫處理會顯著抑制MPP+所增加的過氧化氫產生,而且這種抑制的情形會在去偶合蛋白4或 5或冷誘導核醣核酸結合蛋白表現量降低後被阻斷。另一方面,增加去偶合蛋白5的表現量會顯著降低MPP+所增加的H2O2含量。以上結果顯示,SK-N-SH細胞中,低溫是藉由增加去偶合蛋白4、 5及冷誘導核醣核酸結合蛋白的表現量,抑制H2O2的產生,進而達到抑制MPP+造成的細胞毒殺作用。

    Systemic or brain-selective hypothermia is a promising treatment for patients and animals with brain damage. However, the protective mechanisms are still unclear. Recent studies demonstrated that in response to cold exposure, mitochondrial uncoupling proteins (UCPs) and cold-inducible RNA binding protein (CIRBP) are upregulated in brains. It had been demonstrated that overexpression of UCP4 or UCP5 protected neuron from 1-methyl-4 phenylpyridinium (MPP+) toxicity. MPP+, an inhibitor of mitochondrial complex I, is widely used to specifically induce dopaminergic neuron death and generate a parkinsonian model. Herein, I explored whether cold exposure protected neurons from MPP+ toxicity by regulating the expression of UCPs or CIRBP. We found that 32 °C cold exposure for 24 h after, but not before MPP+ treatment reduced MPP+-induced neuron death and H2O2 overproduction in human SK-N-SH neuroblastoma cells and primary cortical neurons. Furthermore, cold exposure induced the upregulation of CIRBP, UCP4, and UCP5 whereas downregulation of UCP2 mRNA expression. After MPP+ treatment, cold exposure further increased UCP4 expression and decreased UCP2 expression. Knockdown of UCP4, UCP5, or CIRBP using lentivirus carried shRNA prevented the cold exposure-induced neuroprotection and enhanced MPP+-induced H2O2 production. On the other hand, overexpression of UCP5 decreased MPP+-induced H2O2 production. The results suggested that cold upregulates UCP4, UCP5, and CIRBP expression to reduce H2O2 and protect neurons against MPP+ toxicity in SK-N-SH cells.

    中文摘要 1 Abstract 3 Contents 6 Introduction 11 Parkinson’s disease (PD) 11 Clinical characteristics 11 Potential pathogenic mechanisms 11 MPTP/MPP+-induced parkisonian model 12 Therapeutic hypothermia 13 Clinical applications 13 Mechanisms underlying hypothermia-induced neuroprotection 13 Mitochondrial uncoupling proteins (UCPs) 14 UCPs act as mediators of thermogenesis 14 Distribution of the UCPs 15 The normal function of UCPs in neuronal function 16 The neuroprotective effect of uncoupling proteins 16 Cold inducible RNA binding protein (CIRBP) 17 Discovery and putative functions of CIRBP 17 CIRBP acts as apoptosis suppressor 18 Research rational and hypothesis 19 Specific aims 19 Materials and methods 20 Chemicals and antibodies 20 Cell culture 20 Human neuroblastoma cells 20 Human embryonic kidney cells 20 Primary cortical neurons 21 3-[4, 5-dimethylthiazol-2-yl]-2, 5 diphenyltetrazolium bromide (MTT) assay 21 Propidium iodide (PI) staining 22 Total RNA extraction 22 Reverse transcription-polymerase chain reaction (RT-PCR) 23 Isolation of mitochondria proteins 24 Western blotting 24 Cloning of full length rat UCP4 and UCP5 25 Transfection of FL-rUCP4 26 Lentivirus delivery system 26 Determination of intracellular H2O2 level 27 Immunocytochemistry 28 Statistical analysis 28 Results 29 The effect of cold exposure on MPP+-induced neurotoxicity 29 The effect of cold exposure on UCPs and CIRBP expression 30 The effect of cold exposure on MPP+-induced UCPs and CIRBP expression 30 The effect of knockdown of UCP4, UCP5, and CIRBP on cold exposure-induced neuroprotection against MPP+ toxicity 31 The effect of overexpression of UCP4 and UCP5 on MPP+ toxicity 32 The effect of cold exposure on MPP+-induced H2O2 overproduction 32 The effect of knockdown of UCP4, UCP5, and CIRBP on cold exposure-induced H2O2 reduction 33 The effect of overexpression of UCP4 and UCP5 on MPP+-induced H2O2 production 34 The effect of cold exposure on MPP+-induced neurotoxicity in primary cortical neurons 34 The effect of cold exposure on MPP+-induced H2O2 overproduction in primary cortical neurons 35 Discussion 36 Time window of cold exposure 36 Different expression pattern between UCPs after treatment 37 UCPs play a role as endogenous antioxidant against oxidative stress 38 CIRBP acts as ROS scavenger under subphysiological temperatures 39 The other possible pathways involved in cold exposure mediated neuroprotection 40 Cold exposure provides neuroprtective effect in primary cortical neurons 41 Conclusion 43 References 44 Figures 49 Fig. 1 Protocol for cold exposure 49 Fig. 2 Cold exposure after, but not before MPP+ treatment significantly reduced the neuron death 51 Fig. 3 Cold exposure for 24 h after MPP+ treatment reduced the neuron death 52 Fig.4 Cold exposure induced the upregulation of CIRBP, UCP4, and UCP5 whereas downregulation of UCP2 mRNA expression 53 Fig. 5 Cold exposure increased MPP+-induced UCP4 upregulation and UCP2 downregulation 54 Fig. 6 Cold exposure increased protein expression of UCP4, UCP5, SOD2 and COXIV 55 Fig. 7 Knockdown of UCP4, UCP5, and CIRBP blocked the neuroprotection induced by cold exposure 56 Fig. 8 Overexpression of UCP4 and UCP5 reduced MPP+-induced neuron death 58 Fig. 9 Cold exposure for 48 h reduced MPP+-induced H2O2 over production 59 Fig. 10 Knockdown of UCP4, UCP5, or CIRBP inhibited the H2O2 reduction induced by cold exposure 60 Fig. 11 UCP4 and UCP5 overexpression reduced MPP+-induced H2O2 production 62 Fig. 12 Cold exposure for 24 h after MPP+ treatment reduced MPP+-induced cell death in primary cortical neuron culture 63 Fig. 13 Cold exposure for 48 h after MPP+ treatment reduced MPP+-induced H2O2 production in primary cortical neuron culture 64 Fig. 14 Possible mechanisms underlying cold exposure mediated neuroprotection against MPP+ toxicity 65

    Alam ZI, Daniel SE, Lees AJ, Marsden DC, Jenner P, Halliwell B (1997a) A generalised increase in protein carbonyls in the brain in Parkinson's but not incidental Lewy body disease. J Neurochem 69:1326-1329.
    Alam ZI, Jenner A, Daniel SE, Lees AJ, Cairns N, Marsden CD, Jenner P, Halliwell B (1997b) Oxidative DNA damage in the parkinsonian brain: an apparent selective increase in 8-hydroxyguanine levels in substantia nigra. J Neurochem 69:1196-1203.
    Alvira D, Tajes M, Verdaguer E, de Arriba SG, Allgaier C, Matute C, Trullas R, Jiménez A, Pallàs M, Camins A (2007) Inhibition of cyclin-dependent kinases is neuroprotective in 1-methyl-4-phenylpyridinium-induced apoptosis in neurons. Neuroscience 146:350-365.
    Andrews ZB, Diano S, Horvath TL (2005a) Mitochondrial uncoupling proteins in the cns: in support of function and survival. Nature Reviews Neuroscience 6:829-840.
    Andrews ZB, Horvath B, Barnstable CJ, Elsworth J, Yang L, Beal MF, Roth RH, Matthews RT, Horvath TL (2005b) Uncoupling protein-2 is critical for nigral dopamine cell survival in a mouse model of Parkinson's disease. J Neurosci 25:184-191.
    Braak H (2003) Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol Aging 24:197-211.
    Chen ST CJ, Hong MH, Li EI (2002) Melatonin attenuates MPP+-induced neurodegeneration and glutathione impairment in the nigrostriatal dopaminergic pathway. J Pineal Res 32:262-269.
    Cheng G (2003) Decrease of intracellular ATP content downregulated UCP2 expression in mouse hepatocytes. Biochemical and Biophysical Research Communications 308:573-580.
    Chip S, Zelmer A, Ogunshola OO, Felderhoff-Mueser U, Nitsch C, Bührer C, Wellmann S (2011) The RNA-binding protein RBM3 is involved in hypothermia induced neuroprotection. Neurobiology of Disease 43:388-396.
    Chu AC-Y, Ho PW-L, Kwok KH-H, Ho JW-M, Chan K-H, Liu H-F, Kung MH-W, Ramsden DB, Ho S-L (2009) Mitochondrial UCP4 attenuates MPP+- and dopamine-induced oxidative stress, mitochondrial depolarization, and ATP deficiency in neurons and is interlinked with UCP2 expression. Free Radical Biology and Medicine 46:810-820.
    Duda JE, Giasson BI, Mabon ME, Lee VMY, Trojanowski JQ (2002) Novel antibodies to synuclein show abundant striatal pathology in Lewy body diseases. Annals of Neurology 52:205-210.
    Erecinska M, Thoresen M, Silver IA (2003) Effects of hypothermia on energy metabolism in Mammalian central nervous system. J Cereb Blood Flow Metab 23:513-530.
    Fornace AJ, Jr., Alamo I, Jr., Hollander MC (1988) DNA damage-inducible transcripts in mammalian cells. Proc Natl Acad Sci U S A 85:8800-8804.
    Fuxe K, Rivera A, Jacobsen KX, H�istad M, Leo G, Horvath TL, Staines W, De la Calle A, Agnati LF (2004) Dynamics of volume transmission in the brain. Focus on catecholamine and opioid peptide communication and the role of uncoupling protein 2. Journal of Neural Transmission 112:65-76.
    Gandhi S, Wood NW (2005) Molecular pathogenesis of Parkinson's disease. Hum Mol Genet 14 Spec No. 2:2749-2755.
    Graham DG (1978) Oxidative pathways for catecholamines in the genesis of neuromelanin and cytotoxic quinones. Mol Pharmacol 14:633-643.
    Gualerzi CO, Giuliodori AM, Pon CL (2003) Transcriptional and post-transcriptional control of cold-shock genes. J Mol Biol 331:527-539.
    Han HS, Qiao Y, Karabiyikoglu M, Giffard RG, Yenari MA (2002) Influence of mild hypothermia on inducible nitric oxide synthase expression and reactive nitrogen production in experimental stroke and inflammation. J Neurosci 22:3921-3928.
    Ho JW-M, Ho PW-L, Zhang W-Y, Liu H-F, Kwok KH-H, Yiu DC-W, Chan K-H, Kung MH-W, Ramsden DB, Ho S-L (2010) Transcriptional regulation of UCP4 by NF-κB and its role in mediating protection against MPP+ toxicity. Free Radical Biology and Medicine 49:192-204.
    Ho PW-L, Chan DY-L, Kwok KH-H, Chu AC-Y, Ho JW-M, Kung MH-W, Ramsden DB, Ho S-L (2005) Methyl-4-phenylpyridinium ion modulates expression of mitochondrial uncoupling proteins 2, 4, and 5 in catecholaminergic (SK-N-SH) cells. Journal of Neuroscience Research 81:261-268.
    Horvath TL, Warden CH, Hajos M, Lombardi A, Goglia F, Diano S (1999) Brain uncoupling protein 2: uncoupled neuronal mitochondria predict thermal synapses in homeostatic centers. J Neurosci 19:10417-10427.
    Kim-Han JS DL (2005) Mitochondrial uncoupling proteins in the central nervous system. Antioxid Redox Signal 7:1173-1181.
    Klein JA (2003) Oxidative stress, cell cycle, and neurodegeneration. Journal of Clinical Investigation 111:785-793.
    Klingenberg M (1999) Uncoupling protein--a useful energy dissipator. J Bioenerg Biomembr 31:419-430.
    Kopin IJ, Markey SP (1988) MPTP toxicity: implications for research in Parkinson's disease. Annu Rev Neurosci 11:81-96.
    Korshunov SS SV, Starkov AA. (1997) High protonic potential actuates a mechanism of production of reactive oxygen species in mitochondria. FEBS Lett 416:15-18.
    Krauss S, Zhang C-Y, Lowell BB (2005) The mitochondrial uncoupling-protein homologues. Nature Reviews Molecular Cell Biology 6:248-261.
    Kwok KH-H, Ho PW-L, Chu AC-Y, Ho JW-M, Liu H-F, Yiu DC-W, Chan K-H, Kung MH-W, Ramsden DB, Ho S-L (2010) Mitochondrial UCP5 is neuroprotective by preserving mitochondrial membrane potential, ATP levels, and reducing oxidative stress in MPP+ and dopamine toxicity. Free Radical Biology and Medicine 49:1023-1035.
    Lee SM, Zhao H, Maier CM, Steinberg GK (2009) The protective effect of early hypothermia on PTEN phosphorylation correlates with free radical inhibition in rat stroke. Journal of Cerebral Blood Flow & Metabolism 29:1589-1600.
    Mao W, Yu XX, Zhong A, Li W, Brush J, Sherwood SW, Adams SH, Pan G (1999) UCP4, a novel brain-specific mitochondrial protein that reduces membrane potential in mammalian cells. FEBS Lett 443:326-330.
    Marchant RJ, Al-Fageeh MB, Underhill MF, Racher AJ, Smales CM (2008) Metabolic Rates, Growth Phase, and mRNA Levels Influence Cell-Specific Antibody Production Levels from In Vitro-Cultured Mammalian Cells at Sub-Physiological Temperatures. Molecular Biotechnology 39:69-77.
    Mattiasson G SM, Gido G, Mathi K, Tomasevic G, Yi S, Warden CH, Castilho RF, Melcher T, Gonzalez-Zulueta M, Nikolich K, Wieloch T. (2003) Uncoupling protein-2 prevents neuronal death and diminishes brain dysfunction after stroke and brain trauma. Nat Med 9:1062-1068.
    Maxwell WL WA, Queen R, Conway B, Russell D, Neilson M, Graham DI. (2005) Slow, medium, or fast re-warming following post-traumatic hypothermia therapy? An ultrastructural perspective. J Neurotrauma 22:873-884.
    McIntyre LA, Fergusson DA, Hebert PC, Moher D, Hutchison JS (2003) Prolonged therapeutic hypothermia after traumatic brain injury in adults: a systematic review. JAMA 289:2992-2999.
    Nègre-Salvayre A HC, Carrera G, Cazenave R, Troly M, Salvayre R, Pénicaud L, Casteilla L. (1997) A role for uncoupling protein-2 as a regulator of mitochondrial hydrogen peroxide generation. FASEB J 11:809-815.
    Nibbelink M, Moulin K, Arnaud E, Duval C, Penicaud L, Casteilla L (2001) Brown fat UCP1 is specifically expressed in uterine longitudinal smooth muscle cells. J Biol Chem 276:47291-47295.
    Nishiyama H, Danno S, Kaneko Y, Itoh K, Yokoi H, Fukumoto M, Okuno H, Millan JL, Matsuda T, Yoshida O, Fujita J (1998) Decreased expression of cold-inducible RNA-binding protein (CIRP) in male germ cells at elevated temperature. Am J Pathol 152:289-296.
    Nishiyama H, Itoh K, Kaneko Y, Kishishita M, Yoshida O, Fujita J (1997) A glycine-rich RNA-binding protein mediating cold-inducible suppression of mammalian cell growth. J Cell Biol 137:899-908.
    Parkinson J (1817) An Essay on the Shaking. J Neuropsychiatry Clin Neurosci 14:223-236; discussion 222.
    Polderman KH (2008) Induced hypothermia and fever control for prevention and treatment of neurological injuries. The Lancet 371:1955-1969.
    Polderman KH, Herold I (2009) Therapeutic hypothermia and controlled normothermia in the intensive care unit: Practical considerations, side effects, and cooling methods*. Critical Care Medicine 37:1101-1120.
    Richard D, Rivest R, Huang Q, Bouillaud F, Sanchis D, Champigny O, Ricquier D (1998) Distribution of the uncoupling protein 2 mRNA in the mouse brain. J Comp Neurol 397:549-560.
    Saito K, Fukuda N, Matsumoto T, Iribe Y, Tsunemi A, Kazama T, Yoshida-Noro C, Hayashi N (2010) Moderate low temperature preserves the stemness of neural stem cells and suppresses apoptosis of the cells via activation of the cold-inducible RNA binding protein. Brain Research 1358:20-29.
    Sakurai T, Itoh K, Higashitsuji H, Nonoguchi K, Liu Y, Watanabe H, Nakano T, Fukumoto M, Chiba T, Fujita J (2006) Cirp protects against tumor necrosis factor-α-induced apoptosis via activation of extracellular signal-regulated kinase. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research 1763:290-295.
    Sanchis D, Fleury C, Chomiki N, Goubern M, Huang Q, Neverova M, Gregoire F, Easlick J, Raimbault S, Levi-Meyrueis C, Miroux B, Collins S, Seldin M, Richard D, Warden C, Bouillaud F, Ricquier D (1998) BMCP1, a novel mitochondrial carrier with high expression in the central nervous system of humans and rodents, and respiration uncoupling activity in recombinant yeast. J Biol Chem 273:34611-34615.
    Schrauwen P, Hesselink M (2002) UCP2 and UCP3 in muscle controlling body metabolism. J Exp Biol 205:2275-2285.
    Shimohata T, Zhao H, Sung JH, Sun G, Mochly-Rosen D, Steinberg GK (2007) Suppression of δPKC activation after focal cerebral ischemia contributes to the protective effect of hypothermia. Journal of Cerebral Blood Flow and Metabolism 27:1463-1475.
    Silasi G, Colbourne F (2011) Therapeutic hypothermia influences cell genesis and survival in the rat hippocampus following global ischemia. Journal of Cerebral Blood Flow & Metabolism 31:1725-1735.
    Teshima Y, Akao M, Jones SP, Marban E (2003) Uncoupling protein-2 overexpression inhibits mitochondrial death pathway in cardiomyocytes. Circ Res 93:192-200.
    Wei YH, Lu CY, Lee HC, Pang CY, Ma YS (1998) Oxidative damage and mutation to mitochondrial DNA and age-dependent decline of mitochondrial respiratory function. Ann N Y Acad Sci 854:155-170.
    Williams GR, Jr., Spencer FC (1958) The clinical use of hypothermia following cardiac arrest. Ann Surg 148:462-468.
    Yanamoto H HS, Soleau S, Kassell NF, Lee KS. (1996 ) Mild postischemic hypothermia limits cerebral injury following transient focal ischemia in rat neocortex. Brain Res 718:207-211.
    Yenari MA, Zhao H, Giffard RG, Sobel RA, Sapolsky RM, Steinberg GK (2003) Gene therapy and hypothermia for stroke treatment. Ann N Y Acad Sci 993:54-68; discussion 79-81.
    Yoritaka A, Hattori N, Uchida K, Tanaka M, Stadtman ER, Mizuno Y (1996) Immunohistochemical detection of 4-hydroxynonenal protein adducts in Parkinson disease. Proc Natl Acad Sci U S A 93:2696-2701.
    Yu XX, Mao W, Zhong A, Schow P, Brush J, Sherwood SW, Adams SH, Pan G (2000) Characterization of novel UCP5/BMCP1 isoforms and differential regulation of UCP4 and UCP5 expression through dietary or temperature manipulation. FASEB J 14:1611-1618.

    下載圖示 校內:2013-09-05公開
    校外:2013-09-05公開
    QR CODE