| 研究生: |
余炘 Yu, Hsin |
|---|---|
| 論文名稱: |
以熔融聚合法製備脂肪族聚碳酸酯並探討其應用 Preparation of aliphatic polycarbonate by melt-polycondensation and its application |
| 指導教授: |
陳志勇
Chen, Chuh-Yung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 中文 |
| 論文頁數: | 64 |
| 中文關鍵詞: | 熔融聚合法 、脂肪族聚碳酸酯 、氫化雙酚A |
| 外文關鍵詞: | melt-polymerization, liphatic polycarbonate, hydrogenated bisphenol A |
| 相關次數: | 點閱:79 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究利用兩階段高溫熔融聚合法製備一系列聚碳酯高分子寡聚合物,包括:尿素型聚碳酸酯、醯胺類脂肪族聚碳酸共聚酯及氫化雙酚A型脂肪族聚碳酸酯等,並將合成的聚酯寡聚合物分別混摻聚對苯二甲基乙二酯(PET)及聚乳酸(Polylactic acid, PLA)高分子,研究其對PET及PLA之結晶結構的影響。合成的聚酯寡聚合物分別以FTIR、1H-NRM光譜儀及凝膠層析儀(GPC)分析鑑定其結構及分子量;其中,尿素型聚碳酸酯寡聚合物之分子量介於7000~8000g/mol、醯胺類脂肪族聚碳酸共聚酯之分子量介於13200~17200g/mol及氫化雙酚A型脂肪族聚碳酸酯之分子量介於2500~9600。接著,再利用熱分析儀(DSC)及偏光加熱板顯微鏡(POM-Heating stage)觀察聚酯寡聚合物混摻聚酯高分子之結晶行為與型態。混摻物經熱分析儀(DSC)及POM分析的結果顯示,添加量1wt%尿素型聚碳酸酯寡聚合物的PET混摻物,其降溫結晶溫度由原本151 oC左右,大幅提高到204 oC,且其晶粒大幅縮小;同樣地,將1wt%尿素型聚碳酸酯寡聚合物混入PLA時,也可成功提高PLA的降溫結晶溫度,克服以往聚乳酸不易結晶之問題,擴大其應用性。另一方面,將己內醯胺(Caprolactam, CPL)導入Poly(1,5-pentylene carbonate, PPC)所製成的醯胺類脂肪族聚碳酸共聚酯中,由於氫建作用力較強的緣故,當CPL量提高時,其玻璃轉移溫度會有上升的趨勢。進一步地將醯胺類脂肪族聚碳酸共聚酯與市售PLA塑膠粒經熔融混煉後,由DSC的分析結果也顯示醯胺類脂肪族聚碳酸共聚酯可成功誘發PLA冷結晶,提升PLA的機械性質。最後,本研究以碳酸二甲酯(DMC)取代光氣與氫化雙酚A(HBPA)成功合成出一系列不同分子量之氫化雙酚A型聚碳酸酯,其分子量最高可達9,600g/mol,其玻璃轉移點為139 oC。將此聚碳酸酯與市售PET進行熔融混煉的DSC分析結果顯示,PHBAP可扮演異相成核點的角色,有效提升PET結晶度。
Aliphatic polycarbonates including urea-polycarbonate , polycarobonate with amide group, and hydrogenated bisphenol-A synthesized by polycondensation of dimethyl carbonate(DMC) and different aliphatic diols is used as the additive agent in commercial PET and PLA. All the products are indentified by 1H-NMR, DSC,GPC and TGA.
Urea-polycarbonate with Mw 7000-8000g/mol enhances the crystallization temperature of PET from 151oC to 204oC by melting blending at 1wt% successfully. In PLA, urea-polycarbonate also induces the formation of the crystalline in DSC cooling curve to improve the thermal properties.
In polycarbonate with amide group, with the increasing of the caprolactam(CPL) in poly(pentamethylene carbonate)(PPC), glass transition temperature increase from -42oC to-33oC because of the hydrogen bonding。Further, we induced the cold crystallization at much lower temperature successfully from136oC to 106oC compared with the neat PLA by melting blending, and with the content of CPL increasing to 30%, the cold crystallization temperature decrease to 101.9oC.
Poly(hydrogenated bisphenol A,PHBPA) with high Tg is synthesized from DMC and HBPA. With DMC/HBPA ration increasing from 4-16, molecular weight raise to 9600.In thermal analysis, PHBPA has high Tg (139oC) performance compared with traditional aliphatic polycarbonate. For application, we choose the PHBPA with molecular weight 6000g/mol to serve as the additive agent of PET. From DSC analysis, PET crystallization temperature raise form 151 C to 204oC after blending at 0.5wt%.With the PHBPA content increases to 1.5wt% in PET, the crystallization temperature raises to 212oC。
[1] 范振誠,「全球聚碳酸酯市場發展概況」
[2] 工研院IEK-ITIS計畫(2010/07)
[3] Kawaguehi K, Takev K,Yasuhiko Y, Chem. & Pharm. Bull., 31, 1400 (1983)
[4] Romano, R. Tesei, “Process for production aromatic carbonate”, JP: 51-105-032 (1976)
[5] Sivaram S, A. G. Shaikh, Polym. Bull., 32, 427-432 (1994)
[6] 石化產業高值化推動方案CMAI 資料、工研院整理
[7] 王慶印,王越,姚潔,王公應,「天然氣」,化工,30卷,(2005)
[8] 化工技術,Vol. 8, No. 11, (2000)
[9] http://baike.baidu.com/view/711328.htm
[10] M. A. Pacheco, C. L. Marshall, Energy & Fuels, 11, 2, (1997)
[11] 談駿嵩,「二氧化碳再利用成為新興產業之可能性」
[12] http://www.libnet.sh.cn:82/gate/big5/www.istis.sh.cn/list
[13] Van Sliedregt A, Knook M, Hesseling SC, Koerten HK, De Groot K and Van Blitterswijk CA,Biomaterials13:819-824(1992)
[14] R¨ ucker M, Laschke MW,Junker D,Carvalho C, Schramm A,M¨ ulhaupt R, et al, Biomaterials 27:5027–5038 (2006).
[15] Matsuo J, Sanda F and Endo T, Macromol. Chem. Phys., 199:97–102 (1998).
[16] Inoue S, Koinuma H and Tsuruta T, J. Polym. Sci. B: Polym. Lett., 7:287–292
[17] Tao Y,Wang X, Chen X, Zhao X andWang F, J Polym. Sci. A: Polym. Chem., 46:4451–4458 (2008).
[18] Darensbourg DJ and Moncada AI, Macromolecules 43:5996–6003(2010).
[19] Pˆego AP, Grijpma DW and Feijen J, Polymer 44:6495–6504 (2003).
[20] Kricheldorf HR and Mahler A, J Polym. Sci. A: Polym. Chem., 34:2399–2406(1996).
[21] Yamamoto Y, Kaihara S, Toshima K and Matsumura S,Macromol Biosci9:968–978 (2009).
[22] Pokharkar V and Sivaram S, Polymer 36:4851–4854 (1995).
[23] Foy E, Farrell JB and Higginbotham CL, J. Appl. Polym. Sci. 111:217–227(2009).
[24] Feng Y, Yin N, Li Q,Wang J,Kang MandWang X, Catal. Lett. 121:97–102(2008).
[25] T. Yu, J. Ren, S Gu and M. Yang, Polym. Int., 58, 1058 (2009).)
[26] L. Lu and K. Huang, Polym. Int., 54, 870 (2005).
[27] Z. Jiang, C. Liu and R.A. Gross, Macromolecules, 41, 4671 (2008).
[28] L.N. Vandenberg, I. Chahoud, J. J. Heindel, V. Padmanabhan, F. J. R.Paumgartten and G. Schoenfelder, Environ. Health Perspect., 118,1055 (2010).
[29] J. H. Park, J.Y. Jeon, J. J. Lee, Y. Jang, J. K. Varghese and B.Y. Lee, Macromolecules, 46, 3301 (2013).
[30] Ranran Xia, Zhenhuan Li, Bowen Cheng,and Kunmei Su,Korean J.Chem. Eng,31(3),427-430(2014)
[31] R. Zdrahala, Journal of Biomater Applications, 11, 37, 1996
[32] L. Pinchuk, JB. Martin, M. Esuivel, D. MacGregor, Journal of
Biomater Applications, 3, 260, 1988
[33] M. Yang, Z. Zhang, C. Hahn, G. Laroche, M. King, R. Guidoin,
Journal of Biomedical Materials Research, 48, 19, 1999
[34] 于濤,王篤金,王佛松。高分子通報。5卷,(2007)。
[35] Dieter W, Christel R, Dieter V H, WOP 9606877
[36] Tao Yu, Jie Ren, Shuying Gu, Ming Yang, Society of Chemical Industry, 2009
[37] 陳俊,陳劍玲,劉正英,殷茜,黃銳。高分子通報,2月(2005)。
[38]李春山,張鎖江,張香平,徐全清。過程工程學報,3,5,(2003)。
校內:2025-12-31公開