簡易檢索 / 詳目顯示

研究生: 陳朝憶
Chen, Chao-Yi
論文名稱: 水力動力LED照明技術之研究
Technology of LED Illumination by Hydraulic Power
指導教授: 周榮華
Chou, Jung-Hua
學位類別: 碩士
Master
系所名稱: 工學院 - 工程科學系
Department of Engineering Science
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 100
中文關鍵詞: 轉子葉片高功率LEDCFD微型水力發電系統
外文關鍵詞: Blade, CFD, Micro-Hydraulic Power Generator System, LED
相關次數: 點閱:80下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究之目的在於研製一微型水力發電系統,以驅動高功率LED 照明。利用數值方法配合實驗測試,找出高效能之水力與幾何設計之發電機轉子葉片。根據葉片設計理論估算葉片之幾何參數,將CAD 所建立之模型以CFD 套裝軟體進行流場之數值分析。微型水力發電系統之測試,則以模擬之較佳轉子葉片葉型為實做模型之依據,進行位能與動能測試,並找出系統之最佳操作點。
    CFD 模擬結果顯示,在葉片數量7 片、輪轂為流線型與葉片進口角度為120°之葉型具有較佳之效率,由流場分析之速度與壓力分佈可觀察出並無顯著之渦漩與二次流現象發生。水力發電系統測試結果,在位能測試方面,在高度差為13 cm 時,流速約1.6 m/s、轉子轉速546 rpm,發電電壓為2.26V,即可驅動LED,其能量轉換效率約68%,而總效率為1%;動能測試則利用增速齒輪組將發電機轉子轉速提高,使達LED之驅動電壓,當流速為0.6 m/s 時,系統所搭配之齒數比為2.5,葉片轉子轉速為200rpm,經由增速傳動到發電機轉子即可達500 rpm 之LED驅動轉速,系統之發電電壓達2.2V,其總效率可達約1.5%。

    This study aims to design a Micro-Hydraulic Power Generator System (MHPGs) and to light up LEDs. By CFD simulations and the experiments, the hydraulic and geometric designs of high efficiency blades have been investigated. The geometric parameters of the blade are worked out by lumped design theories. The flow fields and the performance curves are then analyzed by a CFD software. The designed MHPGs are tested using both potential and kinetic energies to obtain the operation points for LED lighting.

    The CFD simulations show that the case of 7 blades with streamlined hub and inlet angle 120° performs better. According to the velocity and pressure distributions, the fluid field shows no vortices and secondary flows. Potential tests reveal that the MHPGs can light up an LED. when the height difference is 13 cm. The mechanical energy conversion efficiency is about 68% and total efficiency is about 1%. In the kinetic energy test , a gear pair with gear ratio of 2.5 can increase the rotational speed of the generator. The MHPGs can generate 2.2V to light up a LED and the total Efficiency is about 1.5%.

    目錄 目錄………………………………………………………..Ⅰ 表目錄……………………………………………………..Ⅴ 圖目錄………………………………………………….….Ⅵ 符號說明………………………………………………….Ⅸ 第一章 緒論.......................................................................1 1-1 前言......................................................................... 1 1-2 研究動機................................................................. 2 1-3 文獻回顧................................................................. 5 1-4 研究流程................................................................. 10 第二章 水輪機與發電機之形式與理論..................... 12 2-1 水輪機之理論......................................................... 12 2-1-1 水輪機之種類................................................... 13 2-2 發電機之原理......................................................... 14 2-2-1 發電機之形式................................................... 14 2-2-2發電機之特性曲線............................................. 16 2-3 發電機之交流電整流與升壓電路........................ 16 第三章 轉子葉片設計理論......................................... 17 3-1葉片基本設計參數.................................................. 17 3-2葉片進、出口角度之推導...................................... 19 第四章 數值方法與基本假設..................................... 22 4-1 基本假設................................................................. 22 4-2統御方程式.............................................................. 23 4-3 數值模型之說明.................................................... 25 4-3-1 數值模型之建構................................................ 26 4-3-2 數值網格之建立................................................ 26 4-3-3 邊界條件之設定................................................ 29 4-4 數值方法................................................................. 30 4-4-1 紊流模型.......................................................... 30 4-4-2 壁面函數.......................................................... 31 . 第五章 實驗方法與設備............................................. 33 5-1 實驗方法................................................................. 33 5-2 實驗模型................................................................. 33 5-2-1 轉子葉片........................................................... 33 5-2-2 輪轂.................................................................. 34 5-2-3 測試平台.......................................................... 34 5-2-4 抽水泵.............................................................. 35 5-2-5 聯軸器.............................................................. 35 5-2-6 增速齒輪組....................................................... 36 5-2-7 LED .................................................................. 36 5-3 實驗儀器................................................................. 37 5-3-1 光電式轉速計.................................................... 37 5-3-2 三用電表........................................................... 37 第六章 結果與討論....................................................... 38 6-1 轉子葉片設計參數與流場特性之比較.................. 38 6-1-1 轉子葉片之進口角度對葉片效率之影響............. 39 6-1-2 不同葉型:直面、曲面..................................... 40 6-1-3 葉片輪轂形式:流線型、非流線型.................... 41 6-1-4 葉片數量: 7片、10片.................................... 41 6-1-5 轉子葉片之轉動流場......................................... 42 6-2 微型水力發電系統之測試..................................... 44 6-2-1 微型水力發電系統之位能測試........................... 46 6-2-2 微型水力發電系統之動能測試........................... 49 第七章 結論與建議...................................................... 52 7-1 結論......................................................................... 52 7-2 建議......................................................................... 54 參考文獻............................................................................. 55

    參考文獻
    [1] M. Rogol, S. Doi, and A. Wilkinson, “Sun Screen Investment Opportunities in Solar Power,” Solar power sector outlook, CLSA Asia-Pacific Markets,2004.

    [2] H. R. Hart, “A Sensitive Rotary Flowmeter for Hot Water,” Journal of Physics E: Scientific Instrument, vol. 10, pp. 499-501, 1977.

    [3] C. J. Studman and S. E. Compton, “A Low Cost Sensitive Flowmeter,” Journal of Physics E: Scientific Instrument, vol. 16, pp. 190-192, 1983.

    [4] S. C. Lin and C. L. Huang, “An Integrated Experimental and Numerical Study of Forward-Curved Centrifugal Fan,” Experimental Thermal and Fluid Science, vol.26, pp.421-434, 2002.

    [5] T. Kumaresan and J. B. Joshi, “Effect of Impeller Design on the Flow Pattern and Mixing in Stirred Tanks,” Chemical Engineering Journal, vol. 115, pp. 173-193, 2006.

    [6] D. Kaya, “Experimental Study on Regaining the Tangential Velocity Energy of Axial Flow Pump,” Energy Conversion and Management, vol.44, pp. 1817-1829, 2003.

    [7] J. K. Watterson and S. Raghunathan, “Investigation of Wells Turbine Performance Using 3-D CFD,” Energy Conversion Engineering Conference, Proceedings of the 31st Intersociety, vol. 3, pp. 1777 – 1782, 1996.

    [8] M. Roth and R. Peikert, “Flow Visualization for Turbomachinery Design,” Visualization 96. Proceedings, pp. 381-384, 1996.

    [9] A. Goto, M. Nohmi, T. Sakurai and Y. Sogawa, “Hydrodynamic Design System for Pump Based on 3-D CAD, CFD, and Inverse Design Method,” Transactions of ASME, Journal of Fluids Engineering, vol.124, pp.329-335, 2002.

    [10] A. Goto and M. Zangendh, “Hydrodynamic Design of Pump Diffuser Using Inverse Design Method and CFD,” Transactions of ASME, Journal of Fluids Engineering, vol.124, pp.319-328, 2002.

    [11] J. S. J. Chen, “On the Design of a Wide Range Mini-Flow Paddlewheel Flow Sensor,” Sensors and Actuators, vol.87, pp.1-10, 2000.

    [12] Inoue, M., and Kuroumaru, M., “Three-Dimensional Structure and Decay of Vortices Behind and Axial Flow Rotating Blade Row,” ASME Journal of Engineering for Gas Turbine and Power, vol. 106, pp. 561-569, July 1984.

    [13] Inoue, M., and Kuroumaru, M., ”Structure of Tip Clearance Flow in an Isolated Axial Compressor Rotor,” ASME Journal of Engineering for Gas Turbine and Power, vol. 111, pp. 251-256, July 1989.

    [14] N. W. Harvey, M. G. Rose, M. D. Taylor, S. Shahpar, J. Hartland and D. G. Gregory-Smith, “Nonaxisymmetric Turbine End Wall Design: Part Ι- Three-Dimensional Linear Design System,” Transactions of ASME, Journal of Turbomachinery, vol.122, pp.278-285, 2000.

    [15] S. M. Miner, “Evaluation of Blade Passage Analysis Using Coarse Grids,” Transactions of ASME, Journal of Fluids Engineering, vol.122, pp.345-348, 2000.

    [16] B. Kirke and A. E. Gezawy, “Design and Model Tests for an Efficient Mechanical Circulator/Aerator for Lakes and reservoirs,” Water Resources, vol. 31, no.6, pp. 1283-1290, 1997.

    [17] C. Penche, “Layman's Guidebook on How to Develop a Small Hydro Site”, ESHA, June 1998.

    [18] P. J. Ossenbruggen, “ Systems Analysis for Civil Engineers,” John Wiley, 1984.

    [19] 林黎柏, “流體機械,” 復文出版社, 1986.
    [20] 蔡旭容, “流體機械,” 三民出版社, 1984.
    [21] 邱天基, “電機機械,” 全華科技, 2003.
    [22] 邱天基, 陳國堂, “電機機械,” 全華科技圖書, 1994.
    [23] 蕭進松, 謝承達, “電機機械,” 全華科技圖書, 2007.
    [24] B. Eck, “Fans,” Pergamon Press, New York, 1973.

    [25] A. J. Stepanoff, “Centrifugal and axial flow pumps :theory, design, and application 2nd ,” John Wiley and Sons, 1957.

    [26] Rae, W. H. Jr. and Pope A., “Low-Speed Wind Tunnel Testing,” John Wiley and Sons, 2nd Ed., 1984.

    [27] “GAMBIT 2.0 Modeling Guide” Fluent Inc., 2003.

    [28] “Fluent 6.1 Documentation,” Fluent Inc., 2003.

    [29] D. Choudhury, “Introduction to the Renormalization Group Method and Turbulence Modeling,” Fluent Inc.Technical Memorandum TM-107, 1993.

    [30] B. E. Launder and D. B. Spalding, “The Numerical Computation of Turbulent Flow,” Computer Methods in Applied Mechanics and Engineering, vol.3, pp.269-298, 1974.

    [31] http://www.asiateck.com.tw,亞必特股份有限公司.

    [32] 小栗富士雄,小栗達男,黃癸森編譯,“機械設計圖表便覽,” 眾文, 1993.
    [33] J.Y. Luo, R.I. Issa, and A.D. Gosman, “Prediction of Impeller-Induced Flow in Mixing Vessels Using Multiple Frames of Reference,” IchemE Symposium Series, vol.136, pp.549-556, 1994.

    [34] R. W. Fox, and A.T. McDonald, “Introduction to Fluid Mechanics 5th,” John Wiley and Sons. Inc, 1998.

    [35] D. F. Young, B. R. Munson, and T. H. Okiishi, “A Brief Introduction to Fluid Mechanics 3 th,” New York Wiley, 2003.

    [36] 陳朝憶, 周榮華, “流量計轉子葉片流場分析,” 中華民國力學學會第三十屆全國力學會議, pp.212, 2006.

    下載圖示 校內:2012-07-19公開
    校外:2012-07-19公開
    QR CODE