簡易檢索 / 詳目顯示

研究生: 陳彥宇
Chen, Yen-Yu
論文名稱: 電噴霧法製備SiO2奈米微粒及正丁醇蒸氣在微粒上之非均勻相核凝
Preparation of SiO2 nanoparticles by elelctrospray and the heterogeneous nucleation of n-butanol vapor on the SiO2 nanoparticles
指導教授: 陳進成
Chen, Chin-Cheng
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2003
畢業學年度: 91
語文別: 中文
論文頁數: 136
中文關鍵詞: 電噴霧法帶電效應奈米微粒流動型雲霧室非均勻相核凝臨界過飽和度
外文關鍵詞: electrospray, charge effect, nanoparticles, flow cloud chamber, heterogeneous nucleation, critical supersaturation
相關次數: 點閱:79下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 奈米微粒因為粒徑很小而可能顯現出與巨觀材料性質不同的效應。在大氣中因為天然及人為因素亦產生相當多的奈米微粒,成為大氣氣膠中重要成分。本研究以電噴霧法製備有機碳酸二苯酯(diphenyl carbonate)以及無機SiO2奈米微粒並以流動型雲霧室探討正丁醇蒸氣在帶電或不帶電之無機SiO2奈米微粒(8~20nm)上所引起之非均勻相核凝機構。
    在無機SiO2奈米微粒所引起的非均勻相核凝方面,無論是帶電或不帶電的微粒,其粒徑越小,臨界過飽和度隨之增大,定性上與理論相符合。而帶單一正、負電荷之微粒臨界過飽和度大約相同,也就是說並沒有明顯的因微粒所帶之正負電荷極性不同而有不同的效應產生。有關電荷效應,在10~20nm之間的SiO2微粒,不帶電微粒所需之臨界過飽和度小於帶電微粒的值,但在8nm時,不帶電微粒之臨界過飽和度大於帶電微粒的值。

    Nanoparticles may have a property different from the bulk due to such a small size. Recently, the subjects concerning their production, properties and applications have received extensively attention and been intensively investigated. On the other hand, nanoparticles are generated due to natural and anthropogenic activities, and become an important component of the atmospheric aerosols. In the study, an electrospray aerosol generator was used to generate organic/inorganic nanoparticles and the flow cloud chamber(FCC) was employed to examine the effects of particle size and charge on the critical supersaturation for the condensation of a supersaturated n-butanol vapor on inorganic nanoparticles with a diameter from 8 to 20nm, each carrying a single positive or negative charge or no charge.
    For the condensation of n-butanol vapor on SiO2. The results show that no matter the neutral or charged particles, the experimental Scr increases with decreasing particle size at a rate qualitatively in reasonable agreement with the theoretical prediction. The Scr of single-chaged positive and negative particles are almost the same. On the other hand there is a charge effect on Scr. The Scr of charged particles is greater than that of the neutral particles for particles with a diameter in the range of 10~20nm. But for the particles with a diameter of 8nm, the Scr of the charged particles is smaller than that of the neutral particles.

    中文摘要 Ⅰ 英文摘要 Ⅱ 誌謝 Ⅲ 目錄 Ⅳ 表目錄 Ⅷ 圖目錄 Ⅹ 符號說明 ⅩⅤ 第一章 緒言 1 1.1 簡介 1 1.2非均勻相核凝文獻回顧 5 1.3蒸氣於帶電微粒上之核凝 6 1.4研究目標 9 第二章 理論分析 10 2.1 電噴霧法(Electrospray) 11 2.2 核凝理論 22 2.2.1不可溶中性微粒 之計算 24 2.2.2臨界過飽和度計算 29 2.2.3不可溶帶電微粒 之計算 30 2.3 雲霧室中溫度與濃度分佈 32 第三章 實驗系統及操作 36 3.1 實驗系統 36 3.1.1 微粒產生器(Aerosol Generator) 38 3.1.2 電力篩選器(Electrostatic Classifier) 41 3.1.3 微粒電荷中和器(Aerosol Neutralizer) 45 3.1.4 電場收集器(Electrostatic Collector) 46 3.1.5 流動型雲霧室(Flow Cloud Chamber ) 48 3.1.6 超細微粒凝結核計數器(Ultrafine Condensation Nucli Counter) 50 3.2 實驗步驟 53 3.2.1去除效率實驗 53 3.2.2電噴霧系統操作 58 3.2.3掃瞄式粒徑分析儀 59 3.2.4理論模擬臨界過飽和度 60 第四章 實驗結果與討論 62 4.1掃瞄式粒徑分析儀(SMPS)系統校正 62 4.2 微粒之TEM分析 70 4.3 空白實驗 73 4.4 去除效率之實驗結果 75 4.5 理論值與不帶電微粒實驗值之比較 81 4.6 電荷極性效應對臨界過飽和度之影響及帶電微粒 之實驗值與理論值比較 91 4.7 電荷效應對臨界過飽和度之影響 101 4.8 水及正丁醇蒸氣對中性不可溶微粒之臨界過飽和 度比較 108 4.9 水及正丁醇蒸氣在不可溶微粒上電荷效應對臨界 過飽和度影響之比較比較 113 第五章 結論 115 參考文獻 116 附錄 125 自述 136

    1.Briant, C.L. and Burton, J.J., “Molecular dynamics study of the effects of
    ions on water microclusters”, J. Chem. Phys., v64, p.2888(1946)
    2.Burayev, T.K. and Vereshchagin, I.P., Fluid Mech., Sov. Res., 1, 56(1972).
    3.Chan, L.Y. and Mohnen, V.A.,J. Atmos. Sci., 37, p.233(1980)
    4.Cloupeau, M. and Prunet-Foch, B., “ Electrostatic spraying of liquids in
    cone-jet mode”, Journal of Electrostatics, v22, n22, p.135~159(1989)
    5.Chen, C.C.,Hung, L.C. and Hsu, H.K., “Heterogeneous nucleation of water vapor
    on particles of SiO2, Al2O3, TiO2 and carbon black”, J. Colloid Interface
    Sci., v157, n2, p465~477 (1993).
    6.Cloupeau, M. and Prunet-Foch, B., “Electrohydrodynamic spraying functioning
    modes:a critical review”, J. Aerosol Sci., v25, n6, p.1021~1036(1994)
    7.Chen, Da-Ren, Pui,David, Y.H.,Kaufman,Stanley L., “Electrospraying of
    conducting liquids for monodisperse aerosol generation in 4nm to 1.8μmdiameter
    range”, J. Aerosol Sci, v26, n6, p.963(1995)
    8.Chen, C.H., Emond, M.H.J., Kelder, E.M.,Meester, B. and Schoonman, J.,
    ”Electrostatic sol-spray deposition of nanostructured ceramic thin films”, J.
    Aerosol Sci., v30, n7, p.959~967(1999).
    9.Chen, Chin-Cheng and Tao, Chun-Ju,” Condensation of supersaturated water vapor
    on submicron particles of SiO2 and TiO2”, J. Chem. Phys., v112, n22,
    p.9967~9977 (2000)
    10.Dunning, W.J., “Chemistry of the Solid State”, (Academic Press),
    N.Y.,(1955).
    11.Danek, M.,Jensen, K.F.,Murray, C.B., Bawendi, M.G., “Synthesis of
    luminescent thin film CdSe/ZnSe quantum dot composites using CdSe quantum dots
    passivated with an overlayer of ZnSe”, Chem. Mater., v8, n1 p.173~180 (1996)
    12.Dulcks, Th. and Juraschek, R., “Electrospray as an ionization method for mass
    spectrometry”, J. Aerosol Sci. , v30, n7, pp 927~943, (1999)
    13.Fletcher, N.H., “Size Effect in Heterogeneous Nucleation”, J. Chem. Phys.,
    v29, p.572~576 (1958).
    14.Fletcher, N.H., “The Physics of Rainclouds”, 1st Ed., Cambridge University
    Press, p.390 (1969).
    15.Good, R.J., “Surface entropy and surface orientation of polar liquids”, J.
    Phys. Chem., v61, p.810(1957).
    16.Guyton, A.C., “Textbook of medical physiology”, 6th Edition, Chap.39, p.487,
    W. B. Saunders, Philadelphia(1987)
    17.Hinds, W.C.,“Aerosol Technology”, (Wiley, New York) (1982).
    18.He, F.,Hopke, P.K., “Experimental study of ion-induced nucleation by
    Radon-decay”, J. Chem. Phys., v99, n12, p.9972(1993).
    19.Hartman, R.P.A.,Brunner, D.J.,Camelot, D.M.A.,Marijinissen, J.C.M. and
    Scarlett, B. , “Electrohydrodynamic atomization in the cone-jet mode physical
    modeling of the liquid cone and jet” , J. Aerosol Sci. , v30 , n7, p. 823~849
    , (1999)
    20.Hartman, R.P.A.,Brunner, D.J.,Camelot, D.M.A.,Marijnissen, J.C.M. and
    Scarlett, B., “Jet break-up in electrohydrodynamic atomization in the con-jet
    mode”, J. Aerosol Sci., v31, n1, p.65~95(2000)
    21.Juisto, J.E.,Kocmond, W.C., “Condensation on nonhygroscopic particles”, J.
    Rech. Atmos., v3, p.19 (1968).
    22.Jameson, G.J.,Del Cerro, M.C.G., “Theory for the equilibrium contact angle
    between a gas, a liquid and a solid”, J. Chem. Soc. Faraday Trans. I, v72,
    p.883(1976).
    23.Jaworek, A. and Krupa, A., “Classification of the modes of EHD spraying”, J.
    Aerosol Sci., v30, n7, p873~893(1999)
    24.Koutsky, J.A.,Walton, A.G. and Baer, E., “Heterogeneous nucleation of water
    vapor on high and low energy surfaces”, Surface Sci., v3, p.165 (1965).
    25.Katz, J.L. and Ostermier, B.J., “Diffusion cloud chamber investigation of
    homogeneous nucleation”, J. Chem. Phys., v47, p.478(1967).
    26.Kebarle, P. and Tang, L., Anal. Chem., v65, p.972A(1993)
    27.Katz, J.L., ”Condensation of a Supersaturated Vapor, I. “The homogeneous
    nucleation of the n-Alkanes”, J. Chem. Phys., v52, p.4733(1970).
    28.Katz, J.L. and Mirabel, P., “Calculation of supersaturation profiles in
    thermal diffusion cloud-chamber”, J. Atmos. Phys., 32, p.646(1975)
    29.Katz, J.L.,Fisk, J.A. and Chakarov, V.M., “Condensation of a supersaturated
    vapor IX. Nucleation of ions”, J. Chem. Phys, v101, p.2309(1994).
    30.Kusaka, I., Wang, Z.G. and Seinfeld, J.H., ”Ion-induced nucleation:A
    density function approach”, J. Chem. Phys., v102, n2, p913(1995)
    31.Kusaka, I.,Wang, Z.G. and Seinfeld, J.H., ”Ion-induced nucleationⅡ:
    Polarizable multipolar molecules”, J. Chem. Phys., v103, n20, p.8993(1995)
    32.Kaufman, Stanley L., “Analysis of biomolecules using electrospray and
    nanoparticles methods:the gas phase electrophoretic mobility molecular
    analyzer (gemma)”, J. Aerosol Sci., v29, n5-6, p.537~552(1998).
    33.Kaufman, Stanley L., “Electrospray diagnostics performed by using sucrose and
    proteins in the gas-phase electrophoretic mobility molecular” Special Issue on
    Ion Formation Mechanisms in Electrospray, ed. S. Rutan and J. Fenn(1999).
    34.Koropchak, John A., Sadain, Salma,Yang, Xiaohui,Magnusson, Lars-Erik,
    Heybroek, Mari,Anisimov, Micheal,Kaufman, Stanley L., ”Nanoparticle
    Detection Technology for Chemical Analysis” Analytical Chemistry, v71, n11, p.
    386A-394A(1999)
    35.Loeb, L.B.,Kip, A.F. and Einarsson, A.W., “On the nature of ion sign
    preference in C. T. R. Wilson cloud chamber condensation experiments”, J.
    Chem. Phys., v6, 265(1938).
    36.LaMer, V.K.,Gruen, R., “A direct test of Kelvin’s equation connecting
    vapour pressure and radius of curvature”, Trans. Faraday Soc., v48, p.410
    (1952).
    37.Liu, B.Y.H.,Pui, D.Y.H.,Mckenzie, R.L.,Agarwal, J.K.,Pohl, F.G.,
    Preining, O.,Reischl, G.,Szymansky, W. and Wagner, P.E., “Measurement of
    Kelvin equivalent size distribution of well-defined aerosols with particles
    diameter than 13nm”, Aerosol Sci. Technol., v3, n1, p.107~115(1984).
    38.Lazaridis, M., “The effects of surface diffusion and line tension on the m
    Mechanism of heterogeneous nucleation”, J. Colloid Interface Sci. v155, n2,
    p.386~391(1993).
    39.Lenggoro, I. Wuled, Okuyama, Kikuo,Fernandez De La Mora, J. and Tohge,
    Noboru, “Preparation of ZnS nanoparticles by electrospray pyrolysis”, J.
    Aerosol Sci., v31, n1, p.121(2000).
    40.McGraw, R.,”A corresponding state correlation of the homogenous nucleation
    threshold of supercooled vapors”, J. Chem. Phys.,v75, n11, p5514~5521(1981)
    41.Mäkelä, J.M.,Riihela, M.,Ukkonen, A.,Jokinen, V. and Keskunen, J.,
    “Comparison of mobility equivalent diameter with Kelvin-Thomson ion mobility
    data”, J. Chem. Phys., v105, n4, p.1562~1571(1996).
    42.Pruppacher, H.R. and Klett, J.D., “Microphysics of Clouds and
    Precipitation”, (Reidel, Holland), p.714 (1980).
    43.Porstendorfer, J.,Scheibel, H.G.,Pohl, F.G.,Preining, O.,Reischl, G. and
    Wagner, P.E., ”Heterogeneous nucleation of water vapor on monodispersed Ag and
    NaCl particles with diameter between 6 and 18nm”, Aerosol Sci. Technol., v4,
    p.65(1985).
    44.Russell, K.C., “Nucleation on gaseous ions”, J. Chem. Phys., 50,
    p.1809(1969)
    45.Rusanov, A.I. and Kuni, F.M., ”Reformulation of the thermodynamic theory of
    nucleation of charged particles”, J. Colloid Interface Sci., v100, n1,
    p.264(1984)
    46.Rabeony, H and Mirabel, P., ”Vapor nucleation on ions”, J. Chim. Phys.
    Physicochim. Biol., v83, p.219(1986)
    47.Rosell-Llompart, J. and Fernandez De La Mora, J., “Generation of monodisperse
    droplets 0.3 to 4μm in diameter from electrified cone-jets of high conducting
    and viscous liquids”, J. Aerosol Sci., v25, n6, p.1093(1994)
    48.Stachorska, D., “Cindensation of supersaturated vapor”, J. Chem. Phys., v42,
    p.1887(1965)
    49.Saville, G., “Computer simulation of the lique-solid-vapor contact angle”,
    J. Chem. Soc. Faraday Trans. II, v73, p.1122 (1977).
    50.Suck, S.H., “Change of free energy in heteromolecular nucleation:
    Electrostatic energy contribution”, J. Chem. Phys., v75, n10, p5090~5096(1981)
    51.Smith, D.P.H., IEEE Trans. Ind.Appl., 1A-22, 527(1986).
    52.Seto, T.,Okuyama, K.,de Juan, L. and Fernadez De La Mora, J., “Condensation
    of supersaturation vapors on monovalent and divalent ions of varying sizes”,
    J. Chem. Phys, v107, n5, p.1576~1575(1997).
    53.Smyth, W. Franklin, “The use of electrospray mass spectrometry in the
    detection and determination of molecules of biological significance”, Trends
    in analytical chemistry, v18, n5, p.335(1999)
    54.Thomson, J.J., “Conduction of Electricity Through Gases”, 3rd. Ed.,Vol.1
    (Cambridge University, Cambridge),pp.320-333.(1928)
    55.Twomey, S., “Experiment test of the Volmer Theory of heterogeneous
    nucleation”, J. Chem. Phys., v30, p.941 (1959).
    56.Twomey, S.,Piepgrass, M. and Wolfe, T.L.,”An assessment of the impact of
    pollution on globo cloud albedo”, Tellus, v36B, p.356(1984)
    57.Taylor, G. and Van Dyke, M.D., Proc. R. Soc. London, Ser. A, v313, 453(1969).
    58.Tang, K. and Gomez, A., “Generation by electrospray of monodisperse water
    droplets from targeted drug delivery by inhalation”, J. Aerosol Sci., v25, n6
    , p.1237,(1994).
    59.Volmer, M. and Weber, A., ”Keimbildung in ubersattigten Gebilden”, Z.
    Physik. Chem. (Leipzig), v119, 227(1926).
    60.Volmer, M., ”Kinetic der Phasenbildung”, Verlag Th. Steinkopff, Dresden
    (1939).
    61.Vonnegut, B. and Neubauer, R.L., J. Colloid Sci., v7,p616(1952)
    62.Wilson, C.T.R., ”Condesation of water vapour in the presence of dust-free air
    and other gases”, Phil. Trans. A, v189, p.265(1897).
    63.White, L.R., “Deviation from Young’s Equation”, J. Chem. Soc. Faraday
    Trans. I, v73, p.390 (1977).
    64.Zeleny, J., “On the conditions of instability of electrified drops, with
    applications to the electrical discharge from liquid points”, Proc. Camb.
    Philos. Soc., v18, p.71~83(1915).
    65.Zeleny, J., “Instability of electrified surfaces”, Phys. Rev., v10,
    p1-16(1917).
    66.Zettlemoyer, A.C., ”NUCLEATION ”, Chap.4, p151, (Marcel Dekker, Inc.)
    67.Model 3012, Aerosol Neutralizer Instruction Manual, TSI Inc.(2002)
    68.Model 3025A, Ultrafine Condensation particle Counter Instruction Manual, TSI
    Inc.(2002)
    69.Model 3936 SMPS (Scanning Mobility Particle Sizer) Instruction Manual, TSI
    Inc.(2002)
    70.Model 3080, Electrostatic Classifier Instruction Manual, TSI Inc.(2002)
    71.郭明升,”水蒸氣在不溶性無機次微米微粒上之非均勻相核凝現象”, 碩士論文,國立成
    功大學化工系(1995).
    72.陶君儒,”水蒸氣在SiO2、TiO2、葡萄糖與麩胺酸次微米微粒上之非均勻相核凝現象”,
    博士論文,國立成功大學化工系(2000).
    73.許豪仁,”正丁醇蒸汽在味精與乳糖次微米微粒上之非均勻相核凝現象”,碩士論文,國
    立成功大學化工系(1997).
    74.黃崇銓,”正丁醇蒸汽在不溶性無機次微米微粒上之非均勻相核凝現象”,碩士論文,國立
    成功大學化工系(1996).
    75.蔡宜哲,”水蒸氣在不溶性次微米微粒上之非均勻相核凝現象”, 碩士論文,國立成功大
    學化工系(1996).
    76.鄭秀津, “水蒸氣在帶電與中性SiO2不可溶奈米微粒上之非均勻相核凝”, 碩士論文, 國
    立成功大學化工系(2002)

    下載圖示 校內:2004-08-15公開
    校外:2004-08-15公開
    QR CODE