| 研究生: |
徐政華 Hsu, Cheng-Hua |
|---|---|
| 論文名稱: |
複數連續小波轉換應用於下孔式、跨孔式震測法之研究 The Study of Borehole Seismic Test Result Using Complex Continuous Wavelet Transform |
| 指導教授: |
倪勝火
Ni, Sheng-Huoo |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 中文 |
| 論文頁數: | 120 |
| 中文關鍵詞: | 鑽孔震測法 、下孔震測法 、跨孔震測法 、複數連續小波轉換 、複數小波 、時頻分析 |
| 外文關鍵詞: | Downhole seismic test, cross-hole seismic test, complex continuous wavelet transform, time-frequency analysis, complex wavelet |
| 相關次數: | 點閱:72 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
摘要
為求取真實的土壤動態性質,野外現地試驗是不可缺少的一環,鑽孔震測法在土壤波速檢測中經常被提起,其試驗獲得的剪力波速,可透過彈性波傳理論得到剪力模數,為獲得準確的剪力模數,判斷準確的剪力波速是必要的。傳統上多透過人為判斷應力波傳遞到受波器的時間,波形特徵微弱時,多半含有人為誤差,本研究透過複數連續小波轉換,進行訊號處理,藉由傅利葉轉換得到的最大振幅頻率,並應用於時頻域的時頻分析和相角頻譜圖,企圖降低人為判斷的誤差、實現客觀判斷波傳時間的目的。對於小波轉換使用的參數沒有一定標準,為提高分析結果的效率、準確率,本研究透過可行性調查,分析可用的參數,並透過整體分析,確定合用於鑽孔震測法的函數及參數。研究結果顯示:應力波最大振幅頻率約在50~100 Hz時,下孔式震測法適合使用複數Gaussian、複數Morlet小波,跨孔式震測法適合使用複數Gaussian、複數Morlet小波。上述小波函數與參數的轉換結果與人工判讀誤差< 3 %,甚至在雜訊程度很高的波形也能辨別,並能提供下孔式震測法頻譜-深度關係圖,以達成判斷波傳時間的目的。
SUMMARY
In order to obtain the real dynamic properties of soil, the field test is an indispensable method. The borehole seismic test is often mentioned in the detection of soil wave velocity. The shear modulus can be obtained by elastic wave propagation theory and shear wave velocity. In order to obtain accurate shear modulus, it is necessary to judge the shear wave velocity accurately. Traditionally, the time which stress waves transmitted to the receiver is judged artificially. When the waveform characteristics are weak, most of them contain artificial errors. In this study, the signal processing is carried out by a complex continuous wavelet transform. The maximum amplitude-frequency obtained by Fourier transform is applied to time-frequency analysis and phase-angle spectrogram in the time-frequency domain in attempt to reduce the error of artificial judgment and realize the objective judgment of wave propagation time.
The results show that when the maximum amplitude-frequency of stress wave is about 50 Hz to 100 Hz, the downhole seismic method is suitable to use complex Gaussian, complex Morlet, and the cross-hole seismic method is suitable to use complex Gaussian and complex Morlet. The error between the results of the transformation result and artificial judgment is less than 3%.
參考文獻
王文聖、丁晶、李躍清 (2005)。水文小波分析。北京:化學工業出版社。
王志坤 (2008)。「基於小波振幅頻譜和複數小波相位頻譜的高分辨率層序劃分」,石油學報,第29卷,第6期,第865-869頁。
王裕賢 (2010)。「以連續小波轉換分析土層表面波波速之研究」,碩士論文,朝陽科技大學營建工程研究所,台中。
成禮智、郭漢偉 (2005)。「小波與離散變換理論及工程實踐」,清華大學出版社有限公司,第13-23頁。
李咸亨、吳志明 (1991)。「下井探測法量測剪力波速之影響因素探討」,中國土木水力工程學刊,第三卷,第一期,第15-27頁
李吉龍 (2018)。「時頻分析法應用於基樁及版之非破壞檢測評估」,博士論文,國立成功大學土木工程研究所,台南。
李青鋒、繆協興、徐金海 (2007)。「連續複小波變換在工程檢測數據處理中的應用」。中國礦業大學學報,第36卷,第1期,第23-26頁。
周暐翔 (2016)。「複數連續小波轉換應用於基樁完整性檢測之研究」,碩士論文,國立成功大學土木工程研究所,台南。
倪勝火、常正之、黃達勇、施旭峰、陳建民 (1990)。「高雄市區土壤動態特性之研究(一)」,行政院防災科技研究報告79-13號,第6-9、13、19-23、29-35頁。
倪勝火、常正之、楊全成、蔡佩勳、張稚煇 (1994)。「鳳山市區土壤動態特性之研究」,行政院國家科學委員會防災科技研究報告82-45號,第5-10頁,第14-18頁。
孫亞飛 (2008)。「小波分析理論應用於岩石鬆動圈聲波測試的研究」,碩士論文,武漢理工大學土木工程與建築學院,中國武漢。
陳文明 (1994)。「下孔式震測法於現場土層動態參數量測之研究」,碩士論文,國立成功大學土木工程研究所,台南。
曾志瑋 (2009)。「現地跨孔波速檢測軟體之開發」,碩士論文,朝陽科技大學營建工程研究所,台中。
楊子彤 (2017)。「複數小波轉換於評估基樁長度之研究」,碩士論文,國立成功大學土木工程研究所,台南。
楊玉章 (2017)。「應用離散小波轉換及複數連續小波轉換於基樁完整性檢測之研究」,博士論文,國立成功大學土木工程研究所,台南。
楊薪樺 (2017)。「複數連續小波轉換函數應用於基樁非破壞檢測之研究」,碩士論文,國立成功大學土木工程研究所,台南。
維基百科。「高斯函數」,取自網路:https://zh.wikipedia.org/wiki/%E9%AB%98%E6%96%AF%E5%87%BD%E6%95%B0
盧家鋒 (2013)。「醫學訊號分析原理與MATLAB程式應用實作」,取自網路:http://www.ym.edu.tw/~cflu/CFLu_course_matlabsig.html。
賴勇裕 (2017)。「複數小波轉換於偵測預力樁長度之案例研究」,碩士論文,國立成功大學土木工程研究所,台南。
ASTM D4428/D4428M (2014). Standard Test Methods for Crosshole Seismic Testing. ASTM, USA, pp. 1-7.
ASTM D7400/D7400M (2019). Standard Test Methods for Downhole Seismic Testing. ASTM, USA, pp. 1-11.
Bolt, B. A. (1993). Earthquake and Geological Discovery. Scientific American Library, New York.
Burrus, C. S., Gopinath R. A., and Guo H. (1998). Introduction to Wavelets and Wavelet Transforms. U.S.A: Prentice-Hall.
Daubechies, I. (1988). “Orthonormal Bases of Compactly Supported Wavelets.” Communications on Pure and Applied Mathematics, Vol. 41, No. 7, pp. 909-996.
Daubechies, I. (1992). Ten Lectures on Wavelets. SIAM, Philadelphia.
Fourier, J. B. J. (1807). “On the Propagation of Heat in Solid Bodies.” Memoir, Paris Institute.
Gabor, D. (1946). “Theory of Communication. Part 1: The Analysis of Information.” Journal of the Institution of Electrical Engineers-Part III: Radio and Communication Engineering, Vol. 93, No. 26, pp. 429-441.
Goupillaud, P., Grossmann, A., and Morlet, J. (1984). “Cycle-Octave and Related Transforms in Seismic Signal Analysis.” Geoexploration, Vol. 23, No. 1, pp. 85-102.
Hardin, B. O., and Drnevich, V. P. (1972, July). “Shear Modulus and Damping in Soils: Design Equations and Curves.” Journal of The Soil Mechanics and Foundations Division, pp. 667-692.
Haar, A. (1910). “Zur Theorie der Orthogonalen Funktionensysteme”, Ph. D. Thesis, Mathematische Annalen, Vol. 69, No. 3, pp. 331–371.
Hoar, R. J. (1982). “Field Measurement of Seismic Wave Velocity and Attenuation.” Ph. D. Thesis, The University of Texas at Austin, Austin, Texas.
Hwang, S., Menq, F., Stokoe II, K. H., Lee, R. C., and Roberts, J. N. (2018). “Advanced Data Analysis of Downhole Seismic Records.” Geotechnical Earthquake Engineering and Soil Dynamics V, ASCE, GSP 291, pp. 227-235.
Ovanesova, A. V., Suárez L. E. (2004). “Applications of Wavelet Transforms to Damage Detection in Frame Structures.” Engineering Structure., Volume 26, Issue 1, pp. 39-49.
Patel, N. S. (1981). “Generation and Attenuation of Seismic Waves in Downhole Testing.” M. Sc. Thesis, The University of Texas at Austin, Austin, Texas.
Rao, R. M., and Bopardikar A. S. (1998). Wavelet Transforms. Addison Wesley Longman, USA.
Terzaghi, K. and Peck, R. B. and Mesri, G. (1996). Soil Mechanics in Engineering Practice. 3rd Edition, John Wiley and Sons, Inc, New York, pp. 22,60.
Wightman, W. E. (2004). Application of Geophysical Methods to Highway Related Problems. Federal Highway Administration, Washington, D. C.