| 研究生: |
趙偉然 Chao, Wei-Jan |
|---|---|
| 論文名稱: |
氣衝式噴注器設計對噴霧特性之影響 The Effect of Air-Assist Injector Design on Spray |
| 指導教授: |
袁曉峰
Yuan, Hsiao-Feng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 中文 |
| 論文頁數: | 121 |
| 中文關鍵詞: | 氣衝式噴注器 、渦漩數 、噴霧平均粒徑 、噴霧霧化角 、PLIF |
| 外文關鍵詞: | air-assist injector, swirl number, SMD, spray angle, PLIF |
| 相關次數: | 點閱:209 下載:75 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究探討氣衝式噴注器設計對氣流渦旋強度及噴霧特性的影響;研究中固定液體噴注器設計與液體質量流率,以氣衝式噴注器設計(葉片旋轉角度、葉片剖面構型、氣體流道寬度)作為設計變因、氣體質量流率作為操作變因,以產生不同強度的渦漩氣流。研究以流場模擬計算氣流渦漩數,並使用平面雷射誘導螢光技術與粒徑量測儀進行噴霧觀察,以分析噴霧霧化角、液體質量分布、噴霧非均勻度及平均粒徑等霧化特性;最終建立氣衝式噴注器幾何設計、氣流渦漩數及噴霧霧化特性間之關聯性。
研究顯示液體噴霧加入外部渦漩氣流作用後噴霧形成外圍密集中心稀疏的環狀分布,具有霧化角擴張、非均勻度下降、平均粒徑下降的趨勢;相同噴注器幾何設計下,氣體質量流率提升會使氣流軸向速度增加、氣液相對速度提升,噴霧平均粒徑呈現下降趨勢。在相同氣體質量流率下,採用旋轉角度較大的葉片設計或採用翼剖面構型葉片設計使氣流渦漩數增加,此條件下噴霧霧化角擴張、非均勻度下降的趨勢更為顯著。此外相同氣體質量流率下(每秒2.1克),本研究亦發現相比於中流道設計(流道寬度2.5 mm),大流道設計(流道寬度3.5 mm)與小流道設計(流道寬度1.5 mm)下的噴霧霧化角擴張效果均較差,且噴霧非均勻度均較大,並且小流道設計下氣流具有較大的軸向速度、氣液相對速度提升,噴霧平均粒徑的下降趨勢最為顯著。
Based on the references, liquid spray would be atomized more completely with the impact of air vortex. The purpose of this research is to study the influence of air-blast injector design on the swirl number of air vortex and the spray. Different design parameters for angled guide vane and airflow channel were adopted to study.
The results show that, the tangential air velocity and the air vortex swirl number would be higher with larger guide vane angle or with airfoil guide vane design. With narrow airflow channel, the axial air velocity was higher, and the air vortex swirl number was lower. The air-blast injector design with larger air vortex swirl number led to a smaller SMD, a larger spray angle, a larger hollow region, a smaller hollow intensity, and the spray distribution would be more uniform.
[1] A. H. Lefebvre, (1989), “Atomization and Sprays,” Hemisphere Pub. Corp. New York.
[2] Ibrahim Ashraf, (2007),“Nonlinear Breakup Model for a Liquid Sheet Emanating From a Pressure-Swirl Atomizer,”J.Eng. Gas Turbines Power.
[3] A. H. Lefebvre, (1983),“Gas Turbine Combustion,”Chapter10, Hemisphere Publishing Corporation, New York.
[4] Chieh-Jung Chen, (2020),“The Effect of Swirl Injector Design on Swirl Number and Spray, ”National Cheng Kung University
[5] A. A. Rizkalla and A. H. Lefebvre,“Influence of Liquid Properties on Airblast Atomizer Spray Characteristics,”J. Eng. Power, pp.173-179, April 1975.
[6] A. A. Rizkalla and A. H. Lefebvre, (1975),“The Influence of Air and Liquid Properties on Airblast Atomization,”J. Fluids Eng., Vol.97, pp.316-320.
[7] N. K. Rizk and A. H. Lefebvre, (1983), “Influence of Atomizer Design Feature on Mean Drop Size,” AIAA Journal, Vol.21, No.8, pp.1139-1142.
[8] J. Beck, A. H. Lefebvre and T. Koblish, “Airblast Atomization at Conditions of Low Air Velocity,” Paper No, AIAA, 89-0217, 1989.
[9] J. E. Beck, A. H. Lefebvre and T. R. Koblish, (1991), “Liquid Sheet Disintegration 46by Impinging Air Streams,” Atomization and Sprays, Vol.1, No.2, pp.155-170.
[10] J. E. Beck and A. H. Lefebvre, (1991), “Airblast Atomization at Conditions of Low Air Velocity,” J. Propulsion, Vol.7, No.2.
[11] M. Aligner and S. Witting, (1980), “Swirl and Counterswirl Effects in Prefilming Airblast Atomization,” Trans. ASME, J. Eng. Power, Vol.102, pp.706-710.
[12] Norwazan A. R., Mohammad Nazri Mohd. Jaafarb, (2014), “The Effect of Velocity in High Swirling Flow in Unconfined Burner,” Laboratory of Mechanics, Amar Telidji University, France.
[13] P.Balakrishnan, K.Srinivasan, (2017), “Influence of Swirl Number on Jet Noise Reduction Using Flat Vane Swirlers, ” Indian Institute of Technology Madras, India.
[14] H. J. Sheen, W. J. Chen, S. Y. Jeng, T. L. Huang, (1996), “Correlation of Swirl Number for a Radial-Type Swirl Generator,” National Taiwan University.
[15] Chigier, N. A., and Beer, J. M., (1964), “Velocity and Static-Pressure Distributions in Swirling Air Jets Issuing from Annular and Divergent Nozzles,” J. Basic Eng. 788-796.
[16] Malý, M., (2014), “Quality of Fuel Atomization From Small Pressure-swirl Atomizers”, Bachelor's thesis, Brno University of Technology, Brno.
[17] Peter C. Ma, (2016), “High-Fidelity Simulations of Fuel Injection and Atomization of a Hybrid Air-Blast Atomizer”.
[18] N.K. Rizk, A.H. Lefebvret, (1985), “Internal Flow Characteristics of Simplex Swirl Atomizers,” J. Propul.
[19] Peter C. Ma, (2016), “High-Fidelity Simulations of Fuel Injection and Atomization of a Hybrid Air-Blast Atomizer,” Stanford University.
[20] Chung-Hsing Wu, Yeou-Feng Lue, (2009), “The Simulation of 3-Dimensional Fuel Injection Spray Flow Field In Direct Injection Diesel Engine,” National Taiwan University.
[21] Taniguchi, M., “PhotochemCAD 3: Diverse Modules for Photophysical Calculations with Access to Multiple Spectral Databases”.
[22] Du, H., Lindsey, J.s., (2018),“Photochem. Photobiol,”pp.94, pp. 277–327.
[23] Taniguchi, M.,“Database of Absorption and Fluorescence Spectra of >300 Common Compounds for Use in PhotochemCAD”.
[24] Wei-Cheng Chen, (2006),“The Analysis on The Breakup and Mixing of The Impinging Jets,”pp.209, National Cheng Kung University.