簡易檢索 / 詳目顯示

研究生: 范欣怡
Fan, Hsin-Yi
論文名稱: 二元資料相等性和非劣性的統計方法評估
Statistical Evaluation of Equivalence and Non-inferiority for Binary Data
指導教授: 劉仁沛
Liu, Jen-Pei
馬瀰嘉
Ma, Mi-Chia
學位類別: 碩士
Master
系所名稱: 管理學院 - 統計學系
Department of Statistics
論文出版年: 2004
畢業學年度: 92
語文別: 英文
論文頁數: 134
中文關鍵詞: 非劣性相等性反應比率的差異反應比率的比值受限制的最大概似估計式勝算比
外文關鍵詞: RMLE, Non-inferiority, Equivalence, Difference in proportion, Ratio of proportions, Odds ratio
相關次數: 點閱:118下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   近年來相等性或非劣性研究已普遍的應用在臨床試驗上,目的是為了證明,當給予特定的邊界時,新的試驗依然能夠保有與標準試驗相同的效果,但是新的試驗卻可以提供標準試驗所沒有的特性,像是更具安全性、具有較少的毒性、在管理上較方便性、或者是價格較便宜等。一般來說,相等性或非劣性研究應用在二元資料時,有三種不同的統計評估方法,分別是反應比率的差異、反應比率的比值、以及勝算比。本篇論文中,將會利用模擬的方法來討論與比較三種不同方法的經驗型一誤差與檢定力;此外,亦提出在配對試驗設計下,勝算比之受限制的最大概似估計式。最後,用模擬比較與代入例子於所提的方法中。

      In recent years, equivalence or non-inferiority studies have been applied to clinical trial. For equivalence or non-inferiority trials, the goal is to show that the new treatment can maintain similar treatment effects as compared to that of standard treatment by a pre-specified margin. New treatments have been developed because they offer better safety, less toxic, easier to administer or less expensive. Parallel designs and matched-pair designs generate independent and paired binary endpoints. Based on binary endpoints three difference criteria were proposed to evaluate equivalence or non-inferiority. They are difference in proportion, ratio of proportion, and odds ratio. We conducted a simulation to compare the performance of different methods based on these three measures in terms of size and power. In addition, we derived a new test based on restricted maximum likelihood estimator (RMLE) for the odds ratio. Its properties are also investigated by simulation. A numerical method illustrates the proposed method.

    Chapter 1 Introduction . . . . . . . . . . . . . . 1 Chapter 2 Literature Review . . . . . . . . . . . 4 2.1 Unpaired Design . . . . . . . . . . . . . . 4 2.1.1 Difference for Unpaired Binary Data . . 6 2.1.2 Relative Risk for Unpaired Binary Data . 6 2.1.3 Odds Ratio for Unpaired Binary Data . . 7 2.2 Paired Design . . . . . . . . . . . . . . . 9 2.2.1 Difference for Paired Binary Data . . . 9 2.2.2 Relative Risk for Paired Binary Data . 11 Chapter 3 Proposed Methods . . . . . . . . . . . 13 3.1 The Delta-Method . . . . . . . . . . . . . 16 3.2 The Score Test . . . . . . . . . . . . . . 17 3.3 The Likelihood Ratio Test . . . . . . . . 19 3.4 The Wald Test . . . . . . . . . . . . . . 20 3.5 Sample size . . . . . . . . . . . . . . . 21 3.6 Numerical Example . . . . . . . . . . . . 25 Chapter 4 Simulation Study . . . . . . . . . . . 29 4.1 Simulation procedure . . . . . . . . . . . 29 4.1.1 Unpaired Design . . . . . . . . . . . 29 4.1.2 Paired Design . . . . . . . . . . . . 32 4.2 Simulation Results . . . . . . . . . . . . 32 4.2.1 Comparison with different measures for unpaired design . . . . . . . . . 32 4.2.2 Comparison with different measures for paired design . . . . . . . . . . 34 4.2.3 Comparison with four different methods for the odds ratio . . . . . . . . . . 35 Chapter 5 Discussion . . . . . . . . . . . . . 37 References . . . . . . . . . . . . . . . . . . . 38 Appendix A . . . . . . . . . . . . . . . . . . . 40 Appendix B . . . . . . . . . . . . . . . . . . . 43 Appendix C . . . . . . . . . . . . . . . . . . . 45 Appendix D . . . . . . . . . . . . . . . . . . . 47

    1. Bartlett, M.S., "Approximate confidence intervals.
    II: More than one unknown parameter", Biometrika,
    40, 306-317, 1953.
    2. Bickel P.J. and Doksum K.A., Mathematical Statistics:
    Basic Ideas and Selected Topics, Vol. 1, 2nd ed.,
    Prentice Hall, Upper Saddle River, New Jersey.
    3. Chan, I.S.F; Tang, N.S.; Tang, M.L. and Chan, P.S.,
    "Statistical Analysis of Noninferiority Trials with
    a Rate Ratio in Small-Sample Matched-pair Design",
    Biometrics, 59, 1170-1177, 2003.
    4. Dummett, C.W. and Gent, M., "Significance testing to
    establish equivalence between treatments with special
    reference to data in the form of 2×2 tables",
    Biometrics, 33, 593-602, 1977.
    5. Farrington, C.P. and Manning, G., "Test statistics and
    sample size formulae for comparative binomial trials
    with null hypothesis of non-zero risk difference or
    non-unity relative risk", Statistics in Medicine, 9,
    1447-1454, 1990.
    6. Hsueh, H.M.; Liu, J.P. and Chan JJ, "Unconditional Exact
    Tests for Equivalence or Noninferiority for Paired
    Binary Endpoints", Biometrics, 57, 478-483, 2001
    7. Lachin, J.M., Biostatistical Methods: The Assessment of
    Relative Risks, John Wiley and Sons, New York, 2000.
    8. Liu, J.P.; Hsueh, H.M.; Hsieh, E. and Chen, J.J., "Tests
    for equivalence or non-inferiority for paired binary data",
    Statistics in Medicine, 21, 231-245, 2002.
    9. Lu, Y. and Bean, J. A., "On the sample size for one-sided
    equivalence of sensitivities based upon McNemar's test",
    Statistics in Medicine, 14, 1831-1839, 1995.
    10. Nam, J.M., "Establishing Equivalence of Two Treatment and
    Sample Size Requirements in Matched-pairs Design",
    Biometrics, 53, 1422-1430, 1997.
    11. Serfling R.J., Approximation Theorems of Mathematics
    Statistics, John Wiley and Sons, New York, 1980.
    12. Tang, N.S.; Tang, M.L. and Chan, I.S.F., "On tests of
    equivalence via non-unity relative risk for matched-paired
    design", Statistics in Medicine, 22, 1217-1233, 2003.

    下載圖示 校內:立即公開
    校外:2004-06-25公開
    QR CODE