| 研究生: |
曾景泰 Tseng, Ching-Tai |
|---|---|
| 論文名稱: |
內植壓力感測器之銬型微電極研究 Study of Cuff Electrodes with Embedded Pressure Sensors |
| 指導教授: |
朱銘祥
Ju, Ming-Shaung 林宙晴 Lin, Chou-Ching K. |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2003 |
| 畢業學年度: | 91 |
| 語文別: | 中文 |
| 論文頁數: | 67 |
| 中文關鍵詞: | 微機電系統 、銬型微電極 、壓力感測器 |
| 外文關鍵詞: | Cuff electrode, Pressure sensor, MEMS |
| 相關次數: | 點閱:97 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
銬型微電極為神經義肢的重要元件,通常將其銬於神經周圍,用於直接刺激運動神經元,或者用來量測神經電訊號。從文獻上得知,當神經所受壓力大於20 mmHg時,便會對神經內之血液微循環造成阻礙,而導致神經組織之受損或壞死。因此,本研究應用微機電系統技術,利用薄膜製程技術發展內植壓力感測器之銬型微電極,以量測神經所受之壓力及監測其健康情況。以現有之電極製程技術,以及相關製程參數,選擇以電容式壓力感測器,來與銬型微電極之薄膜製程整合。
本研究所製作之電容式壓力感測器,在先前研究中透過有限元素法之電腦模擬,得到最大靈敏度設計之電極大小為700 × 700μm2,介電層厚度為4μm,量測範圍為0~100mmHg,而其靈敏度為1.81×10-4 pF / mmHg‧pF。在製程方面,已完成內植壓力感測器之銬型微電極之製作。並且製作一電容感測電路與架設一校正系統,進行壓力感測器之校正。同時測試介電層材料之機械性質,探討介電層之楊氏係數與感測器靈敏度之關係。此外,更透過神經銬型電極壓力感測器,量測不同直徑之銬型電極對神經所產生之壓力。最後透過動物實驗,探討電容式壓力感測器在動物體內之可行性。
Cuff electrode is an important component of neural prostheses, and they are usually wrapped around the nerves to stimulate the motor fibers or to measure the electrical signals of sensory fibers. It is known that the highest endurable pressure of the peripheral nerves is only 20mmHg. For a pressure over the limit, the micro circulation in the nerve fascicles will be blocked, causing ischemia in nerve tissues. The goal of this study is to design and fabricate a micro pressure sensor by MEMS technology and to be integrated with the cuff electrodes for monitoring the wellbeing condition of the peripheral nerves.
The maximum sensitivity of pressure sensors was determined from the simulation of finite element method in the previous study. The dimension of one sensing electrode is 700 by 700 micro meters, the thickness of dielectric layer is 4 micro meters, the measure range is 0 to 100 mmHg, and the sensitivity is 1.81×10-4 pF / mmHg‧pF. The fabrication of cuff electrodes with embedded pressure sensors is completed. A capacitance conditioning circuit is found and a calibration system is set up to calibrate the pressure sensor. The mechanical property of the dielectric layer, PDMS, is also measured to discuss the relationship between Young’s modulus and the sensitivity. Beside, a nerve cuff electrode pressure sensor is used to measure the external pressure generated by the cuff electrode of different diameters. Finally, the feasibility of capacitive pressure sensor is tested through an animal experiment.
[1] H.K. Trieu, L. Ewe, W. Mokwa, M. Schwarz, and B.J. Hosticka, “Flexible silicon structures for a retina implant,” IEEE MEMS'98, pp. 515-519, 1998.
[2] M. Haugland, and A. Lickel, “Improved method for use of natural sensory feedback in control of grasp force for stimulated hand muscles,” Proceedings of the 20th Annual International Conference of the IEEE Eng. in Medicine and Biology Society Vol. 20, No. 5, pp. 2310-2312, 1998.
[3] M. Schuettler, T. Stieglitz, and J. Meyer, “Multipolar precision hybrid cuff electrode for FES on large peripheral nerves,” Proceedings of the 1999 IEEE Engineering in Medicine and Biology, pp. 383, 1999.
[4] M-A. Crampon, M. Sawan, V. Brailovski, and F. Trochu, “New nerve cuff electrode based on a shape memory alloy armature,” Proceedings of 20th Annual International Conference of IEEE Eng. in Medicine and Biology Society, Vol. 20, No. 5, pp. 2556-2559, 1998.
[5] M. Sahin, M. D. Durand, M. A. Haxhiu, “Whole nerve recordings with the spiral nerve cuff electrode,” Proceedings of the 16th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Part 1 (of 2), Nov 3-6, Baltimore, MD, USA, pp. 372-373, 1994.
[6] J. J. Struijk, M. K. Haugland, M. Thomsen, “Fascicle selective recording with a nerve cuff electrode,” Proceedings of the 1996 18th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Part 1 (of 5), pp. 361-362, 1996.
[7] 簡欣鈞, 朱銘祥, 林宙晴, “以微系統製程設計與研製神經性義肢用微電極,” 中華民國生物醫學工程科技研討會, 2000.
[8] 宋秉翰, 朱銘祥, 林宙晴, “具壓力監測之神經義肢用銬型微電極研究”,中華民國生物醫學工程科技研討會, pp. 47, 2001.
[9] F. A. Jr. Cuoco, and D. M. Durand, “Measurement of external pressures generated by nerve cuff electrodes,” IEEE Tran. on Rehab. Eng., Vol. 8, No.1, pp. 35-41, 2000.
[10] M. Habibi, E. Lueder, T. Kallfass, and D. Horst, “Surface micromachined capacitive absolute pressure sensor array on a glass substrate,” Sensors and Actuators, A: Physical, Vol. 46, No. 1-3, pp. 125-128, 1995.
[11] H. Kim, Yong-Gwon Jeong, and K. Chun, “Improvement of the linearity of a capacitive pressure sensor using an interdigitated electrode structure,” Sensors and Actuators, A: Physical, Vol. 62, pp. 586-590, 1996.
[12] D. Crescini, V. Ferrari, D. Marioli, A. Taroni, “Thick-film capacitive pressure sensor with improved linearity due to electrode-shaping and frequency conversion,” Measurement Science & Technology, Vol. 8, No. 1, Jan, pp. 71-77, 1997.
[13] T. Kung, Hae-Seung Lee, and T. H. Gorger, “A Digital Readout technique for Capacitive Sensor Applications,” IEEE Journal of Solid-State Circuit, Vol.23, No.4, pp. 972-977, August 1988.
[14] O. Akar, T. Akin, and K. Najafi, “A wireless batch sealed absolute capacitive pressure sensor,” Sensors and Actuators, A: Physical, Vol. 95, No. 1, pp. 29-38, Dec 15, 2001.
[15] J. J. Struijk, M. Thomsen, J. O. Larsen, and T. Sinkjar, ‘‘Cuff Electrodes for Long-Term Recordings of Natural Sensory Information,” IEEE Eng. in Med. and Biology, pp. 91-98, June 1999.
[16] H. M. Carlos, Xia Zhang, and William C. Tang, “Surface-Micromachined Capacitive Differential Pressure Sensor with Lithographically Defined Silicon Diaphragm,” IEEE J. MEMS, Vol. 5, June, 1996.
[17] L. K. Baxter, Capacitive Sensors: Design and Applications, IEEE Industrial Electronics Society, 1997.
[18] 郭亨禮, 林友德, 傳感器實用電路, 上海科學技術出版社, pp. 106-110, 1992.
[19] 吳嘉聖, “微感測器與微結構的測試,” 國立成功大學機械系碩士論文,June 2000.
[20] M. Dokmeci, and K. Najafi, “A High-Sensitivity Polyimide Capacitive Relative Humidity Sensor for Monitoring Anodically Bonded Hermetic Micropackages,” J. Microelectromechanical systems, Vol. 10, No. 2, pp. 197-204, June, 2001.