簡易檢索 / 詳目顯示

研究生: 李祥源
Lee, Hsiang-Yuan
論文名稱: SEPIC-Zeta雙向DC-DC轉換器之研製
Study and Implementation of a Bidirectional SEPIC-Zeta DC-DC Converter
指導教授: 梁從主
Liang, Tsorng-Juu
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系碩士在職專班
Department of Electrical Engineering (on the job class)
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 60
中文關鍵詞: 耦合電感雙向轉換器高電壓轉換比
外文關鍵詞: coupled-inductor, bidirectional converter, high voltage conversion ratio
相關次數: 點閱:105下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文提出一SEPIC-Zeta雙向DC-DC轉換器,此轉換器採用耦合電感技術,可藉由耦合電感匝數比之調整,達成高電壓轉換比之功能。轉換器於放電模式及充電模式時皆具有漏感回收之機制,將漏感能量傳送至輸出端,且轉換器具有電壓箝位電路,可降低開關上之電壓應力,提高轉換器之效率。本論文中對轉換器之電路架構作一探討,分析各工作模式及穩態特性。本文首先針對所提出之轉換器電路,分析其動作原理與穩態特性,最後實作雛型電路,其電器規格低壓側與高壓側分別為24 V及400 V,輸出功率為500 W,以驗證本論文中所提轉換器之特性。

    A bidirectional SEPIC-Zeta DC-DC converter with coupled inductor is proposed in this thesis. High voltage conversion is achieved and the leakage-inductor energy is recycled in both discharge mode and charge mode. Also,the switch voltage stress is reduced by the clamping circuit to achieve high efficiency in the proposed converter. The operating principles and steady-state analysis of the proposed converter are discussed in detail. Finally, a laboratory prototype circuit with low voltage side 24 V/ high voltage side 400 V and output power 500 W is implemented to verify the performance of the proposed converter.

    目  錄 摘 要 I 誌 謝 III 目 錄 IV 圖 目 錄 VII 表 目 錄 X 第一章 緒論 1 1.1研究背景與目的 1 1.2論文架構簡介 3 第二章 高轉換比雙向DC-DC轉換器簡介 4 2.1升/降壓式雙向DC-DC轉換器 5 2.2串級式雙向DC-DC轉換器 6 2.3耦合電感雙向DC-DC轉換器 7 2.4耦合電感疊接式雙向DC-DC轉換器 9 2.5討論與比較 10 第三章 SEPIC-Zeta雙向DC-DC轉換器 12 3.1主電路架構 12 3.2放電模式 14 3.2.1放電模式電路分析 14 3.2.2放電模式電壓轉換比 23 3.2.3放電模式邊界導通條件 24 3.3充電模式 27 3.3.1 充電模式電路分析 27 3.3.2 充電模式電壓轉換比 35 3.3.3 充電模式邊界導通條件 36 第四章 系統設計研製與硬體實驗結果分析與討論 39 4.1 系統架構與系統規格 39 4.2 電路元件參數設計 39 4.2.1 耦合電感參數設計 39 4.2.2 電容參數設計 40 4.2.3 開關元件選用 42 4.3 實驗結果 45 4.3.1 放電模式實驗結果 45 4.3.2 充電模式實驗結果 50 第五章 結論與未來研究方向 55 5.1結論 55 5.2未來研究方向 56 參考文獻 57

    [1] W. Y. Choi, S. M. Kim, S. J. Park, K. H. Kim, and Y. C. Lim, “High step-up dc-dc converter with high efficiency for photovoltaic module integrated converter systems,” Proc. IEEE INTELEC Conf., pp. 1-4, 2009.
    [2] J. M. Kwon, B. H. Kwon, and K. H. Nam, “High-efficiency module-integrated photovoltaic power conditioning system,” IET Power Electronics, vol. 2, no. 4, pp. 410-420, Mar. 2009.
    [3] R. J. Wai, W. H. Wang, and C. Y. Lin, “High-performance stand-alone photovoltaic generation system,” IEEE Trans. on Industrial Electronics, vol. 55, no. 1, pp. 240-250, Jan. 2008.
    [4] R. J. Wai and R. Y. Duan, “High step-up converter with coupled-inductor,” IEEE Trans. on Power Electronics, vol. 20, no. 5, pp. 1025-1035, Sep. 2005.
    [5] S. T. Oh, J. H. Kim, J. G. Kim, C. Y. Won and Y. C. Jung, “The analysis of a novel bidirectional soft switching DC-DC converter,” Proc. IEEE ECCE Asia Conf., pp. 2154-2159, May 2011.
    [6] S. M. Chen, T. J. Liang, L. S. Yang and J. F. Chen, “A Cascaded High Step-Up DC–DC Converter With Single Switch for microsource applications,” IEEE Trans. on Power Electronics, vol. 26, no. 4, pp. 1146-1153, Apr. 2011.
    [7] S. Park and Y. Song, “An interleaved half-bridge bidirectional DC-DC converter for energy storage system applications,” Proc. IEEE ECCE Asia Conf., pp. 2029-2034, May 2011.
    [8] S. Inoue and H. Akagi, “A bidirectional DC-DC converter for an energy storage system with galvanic isolation,” IEEE Trans. on Power Electronics, vol. 22, no. 6, pp. 2299-2306, Nov. 2007.
    [9] M. Jain, M. Daniele, and P. K. Jain, “A bidirectional DC-DC converter topology for low power application,” IEEE Trans. on Power Electronics, vol. 15, no. 4, pp. 595-606, Jul. 2000.
    [10] K. N. Hasan, M. E. Haque, M. Negnevitsky, and K. M. Muttaqi, “Control of energy storage interface with a bidirectional converter for photovoltaic systems,” Proc. IEEE AUPEC Conf., pp. 1-6, Dec. 2008.
    [11] T. Shimizu, O. Hashimoto and G. Kimura, “A novel high-performance utility-interactive photovoltaic inverter system,” IEEE Trans. on Power Electronics, vol. 18, no. 2, pp. 704-711, Mar. 2003.
    [12] Y. P. Hsieh, J. F. Chen, T. J. Liang and L. S. Yang, “A novel high step up DC-DC converter for a microgrid system,” IEEE Trans. on Power Electronics, vol. 26, no. 4, pp. 1127-1136, Apr. 2011.
    [13] C. Pham, T. Kerekes and R. Teodorescu, “High efficient bidirectional battery converter for residential PV systems,” Proc. IEEE PEDG Conf., pp. 890-894, Jun 2012.
    [14] C. C. Hua and C. C. Tu, “Design and implementation of power converters for wind generator,” Proc. IEEE ICIEA Conf., pp. 3372-3377, May 2009.
    [15] K. Jin, M. Yang, X. Ruan, and M. Xu, “Three-Level Bidirectional Converter for Fuel-Cell Battery Hybrid power system,” IEEE Trans. on Industrial Electronics, vol. 57, no. 6, pp. 1976-1986, Jun. 2010.
    [16] W. T. Yan, L. S. Yang, C. M. Hong, T. J. Liang, J. F. Chen, and H. T. Yang, “Fuel cell and battery hybrid supplied power system,” Proc. IEEE ICEM Conf., pp. 2676-2680, Oct. 2008.
    [17] S. K. Changchien, T. J. Liang, J. F. Chen, and L. S. Yang, “Novel high step-up DC–DC converter for fuel cell energy conversion system,” IEEE Trans. Industrial Electronics, vol. 57, no. 6, pp. 2007–2017, Jun. 2010
    [18] C. T. Pan and C. M. Lai, “A high efficiency high step-up converter with low switch voltage stress for fuel cell system applications,” IEEE Trans. Industrial Electronics, vol. 57, no. 6, pp.1998-2006, Jun. 2010
    [19] S. V. Araujo, R. P. Torrico-Bascope, and G. V. Torrico-Bascope, “Highly efficient high step-up converter for fuel-cell power processing based on three-state commutation cell,” IEEE Trans. Industrial Electronics, vol. 57, no. 6, pp. 1987–1997, Jun. 2010
    [20] J. Y. Lee, Y. M. Chang, and F. Y. Liu, “A new UPS topology employing a PFC boost rectifier cascaded high-frequency tri-port converter,” IEEE Trans. on Industrial Electronics, vol. 46, no. 4, pp. 803-813, Aug. 1999.
    [21] D. K. Choi, B. K. Lee, S. W. Choi, C. Y. Won, and D. W. Yoo, “A novel power conversion circuit for cost-effective battery-fuel cell hybrid systems,” Journal of Power Sources, vol.152, pp. 245-255, Dec. 2005.
    [22] K. C. Tseng and T. J. Liang, “Novel high-efficiency step-up converter,” IEE Electric Power Applications, vol. 151, no. 2, pp. 182-190, Mar. 2004.
    [23] K. C. Tseng and T. J. Liang, “Analysis of integrated boost-flyback step-up converter,” IEE Electric Power Applications, vol. 152, no. 2, pp. 217-225, Apr. 2005.
    [24] R. J. Wai and R. Y. Duan, “High-efficiency power conversion for low power fuel cell generation system,” IEEE Trans. on Power Electron., vol. 148, no. 4, pp. 329-338, Jul. 2001
    [25] P. Das, B. Laan, S. A. Mousavi, and G. Moschopoulos, “A nonisolated bidirectional ZVS-PWM active clamped DC-DC converter,” IEEE Trans. on Power Electronics, vol. 24, no. 2, pp. 553-558, Feb. 2009.
    [26] B. R. Lin, J. J. Chen, and F. Y. Hsieh, “Analysis and implementation of a bidirectional converter with high conversion ratio,” Proc. IEEE ICIT Conf., pp. 1-6, Apr. 2008.
    [27] P. Das, A. Mousavi, and G. Moschopoulos, “A novel ZVS-PWM DC-DC converter for bidirectional applications with steep conversion ratio,” Proc. IEEE ECCE Conf., pp. 2030-2036, Sep. 2009.
    [28] P. Das, A. Mousavi, and G. Moschopoulos, “Analysis and design of a novel ZVS-PWM DC-DC converter for bidirectional applications with steep conversion ratio,” IEEE Trans. on Power Electronics, vol. 24, no. 2, pp. 553-558, Feb. 2010.
    [29] P. Das, A. Mousavi, and G. Moschopoulos, “A novel ZVS-PWM DC-DC converter for bidirectional applications with steep conversion ratio,” Proc. IEEE ECCE Conf., pp. 2030-2036, Sep. 2009.
    [30] P. Das, B. Laan, S. A. Mousavi, and G. Moschopoulos, “A nonisolated bidirectional ZVS-PWM active clamped DC-DC converter,” IEEE Trans. on Power Electronics, vol. 24, no. 2, pp. 553-558, Feb. 2009.
    [31] C. M. Hong, L. S. Yang, T. J. Liang, and J. F. Chen, “Novel bidirectional DC-DC converter with high step-up/down voltage gain,” Proc. IEEE ECCE Conf., pp. 60-66, Sep. 2009.
    [32] L. Benini, D. Bruni, A. Macii, E. Macii, and M. Poncino, “Discharge current steering for battery lifetime optimization,” IEEE Trans. Computer, vol. 52, no. 8, pp. 985-995, Aug. 2003
    [33] L. Benini, A. Macii, E. Macii, M. Poncino, and R. Scarsi, “Scheduling battery usage in mobile systems,” IEEE Trans. VLSI, vol. 11, no. 6, pp. 1136-1143,
    [34] Y. C. Hsieh, C. S. Moo, T. J. Tsai, and J. S. Ng, “High-frequency discharging characteristics of LiFePO4 battery,” Proc. IEEE ICIEA Conf., pp. 953-957, Jun. 2011.

    下載圖示 校內:2016-01-30公開
    校外:2016-01-30公開
    QR CODE