簡易檢索 / 詳目顯示

研究生: 杜敏綺
Tu, Min-Chi
論文名稱: 餵食半乳糖大白鼠紅血球之蛋白分析
Proteomic Analysis of Galactosemic Rat Red Blood Cell Proteins
指導教授: 黃福永
Huang, Fu-Yung
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 72
中文關鍵詞: 二維蛋白質電泳血紅蛋白餵食半乳糖大白鼠
外文關鍵詞: 2D Electrophoresis, Hemoglobin, Galactosemic rat
相關次數: 點閱:107下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本實驗以蛋白質體學的分析技術對餵食含50%半乳糖飼料之大白鼠進行紅血球蛋白質研究。由於餵食含半乳糖飼料之大白鼠在三週後水晶體會出現混濁的狀態,而六周後眼球已完全不透明,產生白內障的症狀。而白內障為糖尿病的眾多併發症之一,又世界衛生組織將糖化血紅蛋白佔全部血紅蛋白之比例列為檢驗糖尿病的標準之一,因此在本實驗中想藉由二維蛋白質電泳搭配串聯式質譜分析,來找出紅血球之蛋白質變化與半乳糖引起之白內障之相關性。經由二維蛋白質電泳實驗結果發現,餵食半乳糖飼料大白鼠之紅血球蛋白並未因餵食週數增加而產生趨勢性變化,但餵食半乳糖飼料不同週數之大白鼠的紅血球蛋白在二維蛋白質電泳膠片上略有一些差異性存在,又經由質譜研究分析發現紅血球蛋白會隨著餵食半乳糖之週數增加,其蛋白質上胺基酸被糖化修飾的比例也會跟增加,其中發現被糖化修飾的氨基酸為賴胺酸(Lysine)。實驗顯示出餵食半乳糖之大白鼠,其血液中的血紅蛋白被糖化的程度會隨著大白鼠之白內障症狀越嚴重而增加。而在質譜數據中除了糖化血紅蛋白外,亦發現了賴胺酸會形成最終糖化蛋白CML(Carboxymethyllysine)。另,血液生化檢查發現實驗組之血液中葡萄糖濃度比控制組低,而其他之生化檢查,如麥胺草醋酸轉胺(Glutamate oxaloacetate transaminase,GOT)、麥胺丙酮酸轉胺(Glutamate pyruvate transaminase,GPT)、三酸甘油脂(Triglyceride,TG)、肌酐酸(Creatinine,Crea)、血清尿酸(Serum uric acid,SUA)、血清尿素氮(Blood urea nitrogen,BUN)、總膽固醇(T-cholesterol,T-chol)、鈉離子、鉀離子,在大部分的檢測數據中實驗組都比控制組高。顯示高劑量的半乳糖會導致代謝不正常而在短時間引發白內障的產生。

    In this study, we used 2D electrophoresis followed by LC-MS/MS identification to screen the red blood proteins of galactosemic rats. The galactosemic rats are fed diet containing 50% galactose. After three weeks of galactose diets, the rats lens started to show cortical nucleus cataract. It was then further to study whether there is any correlation between the red blood protein and the changes of lens crystallins. In the 2D gel electrophoresis study, there was no obvious sign that red blood proteins changed with the fed time of galactose diets. But based on the MS/MS analysis data, it was found that the extent of the glycation increased with the lens morphological change of becoming progressive opaque. And it was also found advanced glycation end products (AGEs) of Carboxymethyllysine (CML). The blood test showed lower blood glucose content for experimental group compared to control group. Other test such Glutamate oxaloacetate transaminase (GOT), Glutamate pyruvate transaminase (GPT), Triacylglyceride (TG), Creatinine (Crea), Serum uric acid( SUA), Blood urea nitrogen (BUN), Total cholesterol (T-chol), Sodium ion, and Potassium ion, the concentrations were higher for experimental rat than for control one. These results indicated that under high does galactose the metabolism malfunctioned leading to the formation of cataract in a short time feeding period of three weeks.

    目錄 摘要 I Abstract II 致謝 V 表目錄 VIII 圖目錄 X 第一章、 緒論 1 1.1 紅血球的簡介 1 1.1.1 血紅蛋白 2 1.1.2 糖化血紅蛋白 3 1.2 糖尿病 4 1.2.1 第一型糖尿病 5 1.2.2 第二型糖尿病 5 1.2.3 妊娠期糖尿病 5 1.2.4 其他類型糖尿病 6 1.2.5 糖尿病併發症 6 1.2.6 糖尿病診斷標準 7 1.3 研究目的 8 第二章、 實驗 9 2.1 實驗材料 9 2.2 實驗藥品 9 2.3 儀器設備 10 2.4 實驗方法 11 2.4.1 紅血球蛋白純化 11 2.4.2 蛋白質濃度測定 12 2.4.3 快速蛋白質液相層析 14 2.4.4 十二烷基硫酸鈉聚丙烯醯胺凝膠電泳(SDS-PAGE) 15 2.4.5 二維蛋白質電泳分析 17 2.4.6 蛋白質染色 20 2.4.7 二維蛋白質電泳影像分析 21 2.4.8 凝膠膠內原位酶解法(In-gel Trypsin Digestion) 21 2.4.9 質譜分析(LC-MS/MS) 22 2.4.10 胜肽質譜分析數據處理 23 第三章、 實驗結果與討論 24 3.1. 快速蛋白質液相層析 24 3.2. 十二烷基聚丙烯醯胺凝膠電泳結果 29 3.3. 二維蛋白質電泳結果 31 3.4. LC-MS/MS分析結果 49 3.4.1 SDS-PAGE之LC-MS/MS分析結果 49 3.4.2 2D蛋白質電泳之LC-MS/MS分析結果 55 3.5. 血液生化分析 59 第四章、 結論與未來展望 67 參考文獻 68

    (1) Bakala, H., Verbeke, P., Perichon, M., Corman, B., Schaeverbeke, J. Glycation of Albumin with Aging and Diabets in Rats: Changes in its Renal Handling. Mechanisms of Ageing and Development 78,63-71 (1995)
    (2) Basset, P., Beuzard, Y., Garel, M. C., Rosa, J. Isoelectric Focusiong of Human Hemoglobin: Its Application to Screening, to the Characterization of 70 Variants, and to the Study of Modified Fractions of Normal Hemoglobins. Blood 51(5), 971-982 (1978)
    (3) Bhattacharyya, J., Bhattacharrya, M., Chakraborti, A. S., Chaudhuri, U., Poddar, R. K. Structural Organisations of Hemoglobin and Myoglobin Influence Their Binding Behaviour with Phenothiazines. International Journal of Biological Macromolecules 23, 11-18 (1998)
    (4) Bhattacharyya, M., Chaudhuri, U., Poddar, R. K. Studies on the Interaction of Chlorpromazine with Haemoglobin. Int. J. Biol Macromol. 12, 297-301 (1990)
    (5) Brownlee. M., Cerami, A. The Biochemistry of the Complications of Diabetes Mellitus. Annu. Rev. Biochem. 50.385-432 (1981)
    (6) Chua, C. G., Carrell, R. W., Howard, B. H. The Amino Acid Sequence of the α Chain of the Major Haemoglobin of the Rat (Rattus norvegicus) Biochem. J. 149,259-269 (1975)
    (7) D’Alessandro, A., D’Amici, G. M., Vaglio, S., Zolla, L. Time-course Investigation of SAGM-stored leukocyte-filtered Red Blood Cell Concentrates: from Metabolism to Proteomics. Haematologica 97(1), 107-115 (2012)
    (8) Deterding, L. J., Ramirez, D. C., Dubin, J. R., Mason, R. P., Tomer, K. B. Identification of Free Radicals on Hemoglobin from its Self-Peroxidation Using Mass Spectrometry and Immuno-Spin Trapping: Observation of a Histidinyl Radical. J. Biol. Chem. 279, 11600-11607 (2004)
    (9) Devamanoharan, P. S., Ali, A. H., Varma, S. D. Non-enzymatic glycation of lens proteins and haemoglobin-inhibition by pyruvate: an in-vivo study. Diabetes, Obesity and Metabolism 1, 159-164 (1999)
    (10) Foot, J. S., Lui, F. E., Kluger, R. Hemoglobin Bis-Tetramers via Cooperative Azide-Alkyne Coupling. Chem. Commun. 7315-7317 (2009)
    (11) Garrick, L. M., Sharma, V. S., McDonald, M. J., Ranney H. M. Rat Haemoglobin Heterogeneity: Two Structurally Distinct α Chains and Functional Behaviour of Selected Components. Biochem. J. 149, 245-259 (1975)
    (12) Garrick, L. M., Sloan, R. L., Ryan, T. W., Klonowski, T. J., Garrick, M. D. Primary Structure of the Major β-Chain of Rat Haemoglobins. Biochem. J. 173, 321-300 (1978)
    (13) Hempe, J. M., McGehee, A. M., Chalew, S. A. Two-dimensional Analysis of Glycated Hemoglobin Heterogeneity in Pediatric Type 1 Diabetes Patients. Analytical Biochemistry 442, 205-212 (2013)
    (14) Higgins, P. J., Franklin, B. H. Kinetic Analysis of the Nonenzymatic Glycosylation of Hemoglobin. J. Biol. Chem. 256,5204-5208 (1981)
    (15) Ito, C. Evidence for Diabetes mellitus criteria in 2010 using HbA1c. Diabetol Int 4,9-15 (2013)
    (16) Kelner M. J., Alexander, N. M. Rapid Separation and Identification of Myoglobin and Hemoglobin in Urine by Centrifugation through a Microconcentrator Membrane. Clin. Chem 31(1), 112-114 (1985)
    (17) Kooenig, R. J., Blobstein, S. H., Cerami, A. Structure of Carbohydrate of Hemoglobin A1c. The journal of biological chemistry 252(9), 2992-2997 (1977)
    (18) Liumbruno, G., D’Alessandro, A., Grazzini, G., Zolla, L. Blood-related Proteomics. Journal of Proteomics 73,483-507 (2010)
    (19) Li, Y. C., Jeppsson, J. O., Jornten-Karlsson, M., Larsson, E. L., Jungvid, H., Galaev, I. Y., Mattiasson, B. Application of Shielding Boronate Affinity Chromatography in the study of the Glycation Pattern of Haemoglobin. Journal of Chromatography B 776, 149-160 (2002)
    (20) Lindsay, R. M., Smith, W., Lee, W. K., Dominiczak, M. H., Baird, J. D. The Effect of δ-Gluconolactone, an Oxidised analogue of Glucose, on the Nonenzymatic Glycation of Human and Rat Haemoglobin. Clinica Chimica Acta 263, 239-247 (1997)
    (21) Lowrey, C. H., Stuart. S. J. Isolation of Glycosylated Hemoglobin by a combination of Ion-Exchange and Gel-Filtration Chromatographies: A Pilot Study. Analytical biochemistry 154, 424-430 (1986)
    (22) Nagisa, Y., Kato, K., Watanabe, K., Murakoshi, H., Odaka, H., Yoshikawa, K., Sugiyama, Y. Changes in Glycated Haemoglobin Levels in Dabetic Rats Measured with an Atomatic Affinity HPLC. Clinical and Experimental Pharmacology and Physiology 30, 752-758 (2003)
    (23) Nass, N., Simm, A. Advanced glycation ed products (AGEs) in diabetes. Endokrinologie Ⅳ 63-75(2009)
    (24) Otsyula, M. King, M. S., Ketcham, T. G. Sanders, R. A., WatkinsⅢ, J. B. Oxidative Stress in Rats After 60 Days of Hypergalactosemia or Hyperglycemia. International Journal of Toxicology 22, 423-427 (2003)
    (25) Pallotta, V., D’Alessandro, A., Rinalducci, S. Zolla, L. Native Protein Complexes in the Cytoplasm of Red Blood Cells. Journal of Proteome Reserch 12,3529-3546 (2013)
    (26) Peppa, M., Uribarri, J., Vlassara, H. Glucose, Advanced Glycation End Products, and Diabets Complications: What Is New and What Works. Clinical Diabetes 21(4), 186-187 (2003)
    (27) Peterson, K. P., Pavlovich, J. G., Goldstein, D., Little, R., England, J., Peterson, C. M. What is hemoglobin A1c? An analysis of glycated hemoglobins of electrospray ionization mass spectrometry. Clinical Chemistry 44:9, 1951-1958 (1998)
    (28) Preston, A. M. Blood Glucose and Non-Enzymatic Glycation of Proteins in Rats Injected with Low-Dose Streptozotocin and Fed Diets Either High in Sucrose or Starch. Nutrition Research 14(6), 865-873 (1994)
    (29) Roy, M., Sen, S., Chakraborti, A. S. Action of Pelargonidin on Hyperglycemia and Oxidative Damage in Diabetic Rats: Implication for Glycation-Induced Hemoglobin Modification. Life Sciences 82, 1102-1110 (2008)
    (30) Schechter, A. N. Hemoglobin research and the origins of molecular medicine. Blood, 112, 3927-3938 (2008)
    (31) Schnedl, W. J., Liebminger, A., Roller, R. E., Lipp, R. W., Krejs, G. J. Hemoglobin Variants and Determination of Glycated Hemoglobin (HbA1c) Diabetes Metab Res Rev 17, 94-98 (2001)
    (32) Schnedl, W. J., Wallner, S. J., Piswanger, C., Krause, R., Lipp, R. W. Glycated Hemoglobin and Liver Disease in Diabetes Mellitus. Wien Med Wochenschr 155/17-18, 411-415 (2005)
    (33) Sen, S., Kar, M., Roy, A., Chakraborti, A. S. Effect of nonezymatic glycation on fuctional and structural properties of hemoglobin. Biophysical Chemistry 113, 289-298 (2005)
    (34) Stefanowicz, P., Kijewska, M., Kluxzyk, A., Szewczuk, Z. Detection of Glycation Sites in Proteins by High-Resolution Mass Spectrometry Combined with Isotopic Labeling. Analytical Biochemistry 400, 237-243 (2010)
    (35) Stein, S., Cherian, M. G., Mazur, A. Preparation and Properties of Six Rat Hemoglobins. The journal of biological chemistry 246(17), 5287-5293 (1971)
    (36) Turk, Z., Mišur, I., Turk, N. Temporal Association between Lens Protein Glycation Cataract Development in Diabetic rats. Acta Diabetol 34,49-54 (1997)
    (37) Tegos, C., Beutler, E. Glycosylated Hemoglobin A2 Components. Blood 56(3),571-572 (1980)
    (38) Wolffenbuttel, B. H. R., Giordano, D., Founds, H. W., Brucala, R. Long-term assessment of glucose control by haemoglobin-AGE measurement. The Lancet 347,513-515 (1996)

    無法下載圖示 校內:2015-08-19公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE