簡易檢索 / 詳目顯示

研究生: 張玄和
Chang, Shiuan-Ho
論文名稱: 高效率遠紅外線與紫外線光檢波器及矽基板上成長單晶與多晶氮化鎵之研究
The Study of High Efficiency Far Infrared As Well As Ultraviolet Photodetectors and Growing Single / Poly Crystalline GaN Films on Si-Substrate
指導教授: 方炎坤
Fang, Yean-Kuen
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2006
畢業學年度: 94
語文別: 英文
論文頁數: 98
中文關鍵詞: 光檢波器氮碳化矽氮化鎵
外文關鍵詞: MSM, photo-detector, GaN, InGaAs, UV, SiCN, PIN photodiode
相關次數: 點閱:98下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文報導利用磷化銦 / 砷化銦鎵 / 磷化銦 ( InP / InGaAs / InP ) 製作遠紅外線光檢波器、氮碳化矽 ( SiCN ) 製作紫外線光檢波器、以及在矽基板上成長單晶與多晶氮化鎵之一系列研究。
    首先討論對於紅外線 (1300 ~ 1550 nm)光檢波器之研究,吾人利用金屬有機化學氣相沈積法 ( MOCVD )經由極高溫 (1100 ℃)預烤反應爐製程,製作出直徑73 μm,具有低暗電流 ( 39 pA )、低電容 ( 43 pF )、高量子效率( 79 % ) 、高崩潰電壓 ( 大於25伏特 )、及高速率 ( 4.53 GHz ) 的遠紅外線光檢波器。此外, 吾人也利用三種不同的鋅擴散時間 (18,20,22分鐘)之製程,探討其對元件特性所造成之影響。
    再來描述對於紫外線 ( 254 ~ 480nm ) 光檢波器之研究,吾人利用快速升溫化學氣相沈積法 ( RTCVD ) 在矽基板上成長氮碳化矽薄膜,並製作出高性能的紫外線光檢波器。其暗電流在25℃時為30.3μA,在200℃時為253μA;其光/暗電流比由25℃時的6.5倍降低到200℃時的2.3倍(光源為254nm)、室溫時之崩潰電壓為29伏特(崩潰電壓越大越好)、而在高溫下(200℃),元件仍保持相當優良的特性,此時崩潰電壓約為5伏特。
    最後報導,利用金屬有機化學氣相沈積法 ( MOCVD ),在矽基板上經由氮碳化矽薄膜當緩衝層成長單晶與多晶氮化鎵的研究。經由實驗結果得知,氮碳化矽成長在(111) Si基板上,其原子堆積的密度、表面平滑度分別為氮化碳化矽成長在(100) Si基板的11.3、9.4倍,導致氮化鎵成長在氮碳化矽 / (111) Si基板為單晶結構,而成長在氮碳化矽 / (100) Si基板為多晶結構。

    In this dissertation, we reported the investigation of two novel photodetectors, i.e., far infrared InP / InGaAs / InP PIN and ultraviolet SiCN / Si MSM photodetectors, respectively. Additionally, growing single and poly crystalline GaN films on Si-substrate were described in detail.
    Firstly, we reported the preparation and characterization of a high performance, front-illuminated PIN photodiode through the pre-bake process. The developed photodiode possesses a very low dark current of 0.041nA, a very low capacitance of 0.47 pF, a very high responsivity of 0.99A/W (79% quantum efficiency) at λ= 1.55 μm, and the 3dB bandwidth of 4.48 GHz at -5V for the device packaged in TO can, respectively. On the other hand, we also presented the investigation of tuning Zn diffusion time to attain a lowest capacitance of 0.43 pF, a lowest dark current of 39 pA and the highest responsivity of 0.99 A/W (79% quantum efficiency atλ= 1.55 μm) for a large area (73 μm in diameter) InGaAs PIN diode for easier coupling with a fiber.
    Then, we described the SiCN films grown on silicon substrate by rapid-thermal chemical vapor deposition (RTCVD) for the fabrication of an ultraviolet SiCN / Si MSM (metal-semiconductor-metal) photodetector. The MSM SiCN/Si photodetector is very sensitive for 254nm UV light, so that it is suitable for deep-UV light, detecting applications and there must be very good development in the future. Additionally, the photo/dark current ratios (PDCR) of SiCN photodetector are about 6.5 at 25°C and 2.3 at 200°C, respectively.
    Finally, the growth of poly-crystalline GaN on Si (100) and single-crystalline h-GaN on Si (111) substrates with single-crystalline SiCN buffer layer by metal-organic chemical vapor deposition (MOCVD) were depicted. The single-crystalline SiCN on Si (111) substrate possesses 9.4 times in smooth and 11.3 times in grain size smaller than SiCN on Si (100) substrate, which result in GaN on SiCN / Si (100) is poly-crystalline but single-crystalline on SiCN / Si (111).

    目錄 (CONTENTS) 聲明書 1 口試委員簽名書 2 中文摘要 4 各章中文提要 5 誌謝 19 目錄 20 Figure Captions 22 Abstract 25 Chapter 1 Introduction 1-1 Background 27 1-2 Preface of this Dissertation 29 Chapter 2 Ultra High Performance Planar InGaAs PIN Photodiodes for High Speed Optical Fiber Communication 2-1 Introduction 32 2-2 Device Fabrication 33 2-3 Results and discussions 35 2-4 Conclusion 37 Chapter 3 Investigation of Various Zn Diffusion Time on a 2.9 μm Absorption Layer of Very High Quantum Efficiency Planar InGaAs PIN Photodiode 3-1 Introduction 48 3-2 Device Fabrication 49 3-3 Results and discussions 51 3-4 Conclusion 53 Chapter 4 The SiCN/Si MSM Photo-Detector for High-Temperature Deep-UV Detecting Applications and The Investigation of Contact Characteristics of SiCN Films 64 4-1 Introduction 64 4-2 Device Fabrication 65 4-3 Results and discussions 66 4-4 Conclusion 69 Chapter 5 Poly and Single-Crystalline h-GaN Grown On SiCN / Si (100) and SiCN / Si (111) Substrates by MOCVD 78 5-1 Introduction 78 5-2 Devices fabrication and measurement 79 5-3 Results and discussions 80 5-4 Conclusion 82 Chapter 6 Conclusions and Prospects 92 6-1 Conclusions 92 6-2 Prospects 93 Appendix A Author’s Resume Appendix B Author’s Related Publications

    [1] C. L. Chen, “ELEMENTS OF OPTOELECTRONICS & FIBER OPTICS”, IRWIN, Chicago 1996.
    [2] Rosencher and Vinter, “Optoelectronics”, Chapter 11, CAMBRIDGE, United Kingdom, 2002.
    [3] M. Razeghi, A. Rogalski, “Semiconductor ultraviolet detectors.” Journal of Applied Physics, vol. 79, issue 10, pp. 7433-7473, 1996.
    [4] S. F. Ting, Y. K. Fang, W. T. Hsieh, Y. S. Tsair, C. N. Chang, C. S. Lin, M. C. Hsieh, H. C. Chiang, J. J. Ho, “Cubic Single-Crystalline Si1-x-yCxNy with Mirror Face Prepared by RTCVD”, ECS Electrochemical and Solid-State Letters, vol. 4, issue 11, pp. G91-G93, 2001.
    [5] S. J. Pearton, J. C. Zolper, R. J. Shul, F. Ren, “ GaN: Processing, defects and devices”, Journal of Applied Physics, Vol.86, No. 1, pp. 1-78, 1999.
    [6] R. Armitage, Q. Yang, H. Feick, J. Gebauer, E. R. Weber, S. Shinkai and K. Sasaki, “Lattice-matched HfN buffer layers for epitaxy of GaN on Si”, Appl. Phys. Lett., Vol. 81, No. 8, p.p.1450-1452, 2002

    [7] M. Seon, T. Prokofyeva, M. Holtz, S. A. Nikishin, N. N. Faleev, H. Temkin, ”Selective growth of high quality GaN on Si(111) substrates”, Applied Physics Letters , Vol. 76, No. 14, p.p. 1842-1844, 2000.

    [8] D. Wang, Y. Hiroyama, M. Tamura, M. Ichikawa and S. Yoshida, “Growth of hexagonal GaN on Si(111) coated with a thin flat SiC buffer layer”, Appl. Phys. Lett. Vol.77, No. 12, p. p.1846, 2000

    [9] L. S. Wang, K. Y. Zang, S. Tripathy, and S. J. Chua, “Effects of periodic delta-doping on the properties of GaN:Si films grown on Si (111) substrates”,
    Appl. Phys. Lett. Vol.85, No. 24, p.p. 5881, 200
    [10] S. Nakamura and S. F. Chichibu, “Introduction to Nitrided Semiconductor Blue Lasers and Light Emitting Diodes ”, TAYLOR. & FRANCIS. pp.114, 1999

    [11] Hadis Morkoç, “Nitride Semiconductors and Devices”, Springer, pp.105, 1998

    [12] R.S. Tucker, A.J. Tayler, C.A. Burrus, G. Eisentein and J.M. Wiesenfeld, IEE Electronics Letters , Vol. 22, No. 17, pp. 917-918, 1986.
    [13] W. J. Ho, M. C. Wu and Y.M. Lin, “ InGaAs pin photodiodes grown by liquid-
    phase epitaxy using erbium gettering”, IEE Electronics Letters, 6th January 1994 Vol. 30 No. 1, pp. 83-84
    [14] I.H. TAN, J.J. DUDLEY, D.I. BABIC, D.A. COHEN, B.D. YOUNG, E.L. HU, J.E. BOWERS, B.I. MILLER, U. KOREN, and M.G. YOUNG, “High quantum efficiency and narrow absorption bandwidth of the wafer-fused resonant In0.53Ga0.47As photodetectors”, IEEE Photonics Technol. Lett., 1994, 7, pp. 811-813
    [15] R. G. Smith and S. Personick, “Semiconductor Device for Optical Communications”, Chapter 4, Sring Verlag, New York 1980.
    [16] Z. M. Chuang, T. A. Dai, W. J. Ho, J. G. Chen, H. H. Shih, W. L., and Y. K. Tu, “Low Capacitance, Front-Illuminated Planar InGaAs PIN Photodiode on Semi-insulating InP Substrate”, EDMS’ 94, pp.11-7-25 ~ 11-7-28

    [17] J . Justice, B. Corbett, S. Walsh. L. Considine and W.M. Kelly, ” Dark currents in pin photodetectors fabricated by preprocessing and postprocessing techniques of epitaxial liftoff ”, IEE Electronics Letters, 3rd August 1995 Vol. 31 No. 16, pp.1382-1383

    [18] J. Bowers and C. Burrus, “Ultrawide-band long-wavelength p-i-n photodetectors”, IEEE. J. Lightwave Technology, Vol. 5, issue 10, pp. 1339-1350, 1987
    [19] C. L Ho, W. J Ho, M. C. Wu and J. W. Liaw, “Comparison of InGaAs pin Photodiodes with Ti / Pt / Au and Au reflectors.”, IEE Electronics Letters , Vol. 35, No. 20, pp. 1767-1768, 30th September, 1999.
    [20] K. Kato, S. Hata, A. Kozen, J. I. Yoshida, and K. Kawano, “High-Efficiency Waveguide InGaAs pin Photodiode with Bandwidth of over 40 GHz”, IEEE Photonics Technol. Lett., 1991, 5, pp. 473-474
    [21] C. H. Hsieh, Y. S. Huang, P. F. Kuo, Y. F. Chen, L. C. Chen, K. K. Tiong, “Piezoreflectance study of silicon carbon nitride nanorods.” Applied Physics Letters, vol. 76, no. 15, pp. 1-3, 2000.
    [22] X. C. Xiao, Y. W. Li, L. X. Song, X. F. Peng, X. F. Hu, “Structural analysis and microstructural observation of SiCxNy films prepared by reactive sputtering os SiC in N2 and Ar.” Applied Surface Science, 156, pp. 155-160, 2000.
    [23] F. Link, H. Baumann, K. Bethge, H. Klewe-Nebenius, M. Burns, Nuclear Instruments and Methods in Physics Research B 139, 268(1998).
    [24] Z. Gong, E. G. Wang, G. C. Xu, Y. Chen, Thin Solid Films 348,114(1999).
    [25] K. H. Chen, J. J. Wu, C. Y. Wen, L. C. Chen, C. W. Fan, P. F. Kuo, Y. F. Chen, Y. S. Huang, Thin Solid Films 355, 205(1999).
    [26] K. B. Sundaram, J. Alizadeh, Thin Solid Films 370, 151(2000).

    [27] M. I. Chaudhry, “Electrical transport properties of crystalline silicon carbide/silicon heterojunctions.” IEEE Electron Device Lett., vol. 12, pp. 670-672, Dec. 1991.

    [28] L. C. Chen, C. K. Chen, S. L. Wei, D. M. Bhusari, K. H. Chen, Y. F. Chen, Y. C. Jong, Y. S. Huang, “Crystalline silicon carbon nitride: A wide band gap semiconductor.” Applied Physics Letters, vol. 72, no. 19, pp. 2463-2465, 1998.
    [29] J. D. Hwang, Y. K. Fang, K. H. Wu, S. M. Chou, “Improving Breakdown Voltage of SiC/Si Heterojunction with Graded Structure by Rapid Thermal CVD Technology.” IEEE Trans. on Electron Devices, vol. 44, no. 11, pp.2029-2031, 1997

    [30] W. R. Chang, Y. K. Fang, S. F. Ting, Y. S. Tsair, C. N. Chang, C. Y. Lin, S. F. Chen, “The Hetero-Epitaxial SiCN/Si MSM Photodetector for High-Temperature Deep-UV Detecting Applications”, IEEE Electron Devices Letters. Vol. 24, NO. 9, pp. 565-567, September, 2003

    [31] Y. P. Varshni, “Temperature dependence of the energy gap in semiconductors”, Physica 34, 149, 1967
    [32] N. Yoshimoto, T. Matsuoka, T. Sasaki, and A. Katsui,” Photoluminescence of InGaN films grown at high temperature by metalorganic vapor phase epitaxy”, Appl. Phys. Lett. Vol.59, Issue 18, pp. 2251-2253, 1991
    [33] Database, Maintained and Distributed by the International Centre for Diffraction Data (ICDD), Newtown Square, PA, p.p. 76-0703, 1999.

    下載圖示 校內:2007-07-05公開
    校外:2008-07-05公開
    QR CODE