| 研究生: |
許皓程 Hsu, Hao-Cheng |
|---|---|
| 論文名稱: |
馬鞍山核電廠圍阻體土壤結構互制之動力分析 Dynamic Analysis of Nuclear Power plant Containment at Maanshan under Soil-Structure Interaction |
| 指導教授: |
胡宣德
Hu, Hsuan-Teh |
| 共同指導教授: |
吳俊霖
Wu,Jun-Lin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 中文 |
| 論文頁數: | 314 |
| 中文關鍵詞: | 核三廠圍阻體 、極限承壓能力 、自振頻率 、土壤結構互制 、ABAQUS |
| 外文關鍵詞: | Maanshan containment, Ultimate pressure strength, Natural frequency, Soil structure interaction, ABAQUS. |
| 相關次數: | 點閱:99 下載:13 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
核能發電相較於再生能源發電,提供較為穩定、高效率的發電模式,亦無火力發電產生因大量排放廢氣所造成溫室效應及空汙的問題,根據經濟部能源局所統計,2017年台灣發電來源,第一名為火力發電佔82%,第二名即為核能發電佔9.3%,仍然為台灣總發電量第二大來源,雖未來正推動再生能源取代核能,但核能總發電量仍為再生能源的兩倍之多,並非短時間即能取代,就現階段來說核能發電在目前的台灣依然是不可或缺的一部分。雖核能雖然經濟便利,也有其令人擔憂的缺點,台灣因為於板塊交界帶,地震頻繁,不少強震使得房屋受損甚至傾倒,若災害發生在核電廠使圍阻體失效造成輻射外洩後果將不堪設想,因此核電廠之耐震設計應格外嚴格審視。
因此本文利用有限元素法軟體ABAQUS,來對馬鞍山核電廠的圍阻體進行土壤結構互制(Soil-Structure Interaction)分析,以比較剛性地盤假設及實際考慮現地土壤的受震之差異性。由於核三廠已有相關的極限耐壓強度分析研究,因此第一步我們以極限耐壓強度來驗證圍阻體之模型正確,第二部分則是以EERA(Equivalent-linear Earthquake site Response Analyses)軟體對安全停機地震(Safe Shutdown Earthquake)做反摺積(Deconvolution),以求得SSI分析時土壤底部需輸入之地震歷時,同時確認ABAQUS土壤之自然震動頻率與EERA所求得相同,第三部分即比較SSI與剛性地盤受震後結構反應,比較各樓板反應譜及圍組體破壞情形。
Compared with renewable energy power generation, nuclear power generation provides a more stable and efficient power generation mode, and there is no problem of greenhouse effect and air pollution caused by a large amount of exhaust gas generated by thermal power generation. According to statistics from the Energy Bureau of the Ministry of Economic Affairs, the source of power generation in Taiwan in 2017 The largest is thermal power generation, which accounts for 82%, and the second is nuclear power generation, which accounts for 9.3%. It is still the second largest source of total power generation in Taiwan. Although renewable energy is being replaced by nuclear energy in the future, nuclear power generation is still twice as much as renewable energy and cannot be replaced in a short period of time. At this stage, nuclear power generation is still an indispensable part of Taiwan. Although nuclear energy is economical and convenient, it still has its worrying shortcomings. Because of the frequent earthquakes in Taiwan, many houses have been damaged or even dumped due to strong earthquakes. If the disaster occurs in nuclear power plants, the radiation will cause radiation failure. The consequences of the leak will be unimaginable, so the seismic design of the nuclear power plant should be strictly examined.
Therefore, in this paper, we use the finite element method software ABAQUS to analyze the soil-structure interaction(SSI) of the Maanshan nuclear power plant containment to compare the rigid site assumptions with the actual consideration of the SSI behavior. Since there are some research papers on the ultimate compressive strength of the containment , the first part is to verify the model of the containment body with the ultimate compressive strength. The second part we use the software EERA (Equivalent-linear Earthquake site Response Analyses) to performs Deconvolution on the Safe Shutdown Earthquake(SSE) to obtain the seismic duration of the soil at the bottom , and confirms that the natural vibration frequency of the soil in ABAQUS is the same as that obtained by EERA. In the third part, we will compare the structural reaction difference between SSI and rigid site after earthquake, and compare the response spectrum of each floor and the damage of contaiment.
[1]ACI Committee 216.(1994). Guide For Determining the Fire Endurance of Concrete Elements(ACI 216R-89), American Concrete Institute, Detroit, Michigan
[2]ACI Committee, American Concrete Institute, & International Organization for Standardization. (2008). Building code requirements for structural concrete (ACI 318-08) and commentary. American Concrete Institute.
[3]Hu, H. T., & Lin, Y. H. (2006). Ultimate analysis of PWR prestressed concrete containment subjected to internal pressure. International journal of pressure vessels and piping, 83(3),PP. 161-167.
[4]Kee-Jeung Hong.(2017).MdSimplified Model of Soil-Structure Interaction for Seismically Isolated Containment Buildings in Nuclear Power Plant.PP.211-216.
[5]Santosh Kumar.(2015).Response analysis of a nuclear containment structure with nonlinear soil–structure interaction under bi-directional ground motion.PP.213-214
[6]Jen-Ter Chang.(2003).Soil-Structure Interaction Analysis for Hualien Large-Scale Containment Model.PP.460-463
[7]Chong-Ruei Yu,(2017).Safety Analysis of Nuclear Power Plant Containment at Maanshan.
[8]Hsuan-Teh Hu, Jun-Xu Lin (2016).Ultimate analysis of PWR prestressed concrete containment under long-term prestressing loss.
[9]Taiwan Power Company,Final Safety Analysis Report Maanshan Nuclear Station.
[10]Bindis & Parolai.(2013).Seismic input motion determined from a surface-downhole pair ofsensors: a constrained deconvolution approach.
[11]Balmer, G. G. (1949). Shearing Strength of Concrete under High Triaxial Stress-Computation of Mohr’s Envelope as a Curve. Structural Research Laboratory Report, No. Sp-23, Denver, Colorado.
[12]Desayi, P., & Krishnan, S. (1964, March). Equation for the stress-strain curve of concrete. In ACI Journal Proceedings (Vol. 61, No. 3). ACI.
[13]Gilbert, R. I., & Warner, R. F. (1978). Tension stiffening in reinforced concrete slabs. Journal of the structural division, 104(12), 1885-1900.
[14]Richart, F. E., Brandtzaeg, A., & Brown, R. L. (1928). A study of the failure of concrete under combined compressive stresses. University of Illinois Bulletin; v. 26, no. 12.
[15]Shokoohfar, A.(2016).Nonlinear analysis of pre-stressed concrete containment vessel(PCCV) using the damage plasticity model
[16]Rashid, Y. R. (1968). Ultimate strength analysis of prestressed concrete pressure vessels. Nuclear engineering and design, 7(4), 334-344.
[17]H. Matinmanesha1 and M. Saleh Asheghabadib (2011).Seismic Analysis on Soil-Structure Interaction of Buildings over Sandy Soil
[18]Wen-hao Chi,Shan-Jing Bao(2007).Summarization on equivalent linear method of seismic responses for soil layers.
[19]Lian-fang Cai,Xue-min Tian(2012).A blind seismic deconvolution method based on Particle Swarm Optomization.
[20]Nakamuraa, N., & Akitab, S.,(2010). Study of ultimate seismic response and fragility evaluation of nuclear power building using nonlinear three-dimensional finite element mode.
[21]Fei Wang,Kalkan Erol,Zhi-lin Ren(2015).Soil response characteristics to earthquakes based on deconvolution interferometry.
[22]N.C.Tsai &Statta(1974).Theuseof frequency-independentsoil-structure interaction parameters
[23]Hart & Varona(2006).International FLAC Symposium on Numerical Modeling in Geomechanics
[24]Gin-Show Liou & Po-Chi Lo.(2003).Analysis of Soil-structure InteractionBy Sub-structure Method
[25]Eduardo Kausel.(2010).Early hitsory of Soil-structure interaction.
[26]Dimitris Pitilakis &David Murr Wood(2008).Numerical simulation of dynamic soil–structure interaction in shaking table testing.
[27]Toshihiko Hirama(2005).Seismic proof test of a reinforced concrete containment vessel (RCCV): Part 1: Test model and pressure test.PP.1335-1348
[28]黃世建,吳俊霖(2017).核能電廠耐震先導技術研發計畫第一次期中報告子計畫三:核能電廠反應器廠房結構安全功能評估.
[29]陳正興,柯永彥,許尚逸.(2006).核能一廠乾式貯存設施結構地震之安全審查與確認分析期末報告.
[30]許尚逸,陳正興,林威廷(2012).花蓮大比例尺圍阻體模型強制振動試驗之模擬分析.
[31]廖克竑(2013).以套裝軟體進行進步型核電廠圍阻體結構樓板地震反應分析之地震輸入研究.