簡易檢索 / 詳目顯示

研究生: 張根榜
Chang, Ken-Pang
論文名稱: 具支架及凹槽之超音速燃燒流場模擬分析
Numerical Analyses of Supersonic COmbustion Flows with Strut and Cavity
指導教授: 江滄柳
Jiang, Tsung-Leo
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 100
中文關鍵詞: 超音速燃燒衝壓引擎駐焰機構計算流體力學
外文關鍵詞: CFD, Supersonic Combustion, Flame-holding Mechanism
相關次數: 點閱:128下載:9
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 超音速燃燒衝壓引擎已經發展了數十年,使用之燃料由氣態燃料轉為液態燃料,而液態燃料之使用增加了流場之複雜性,因須考慮液態燃料之霧化效果、蒸發過程以及燃燒延遲之影響。而為了延長駐焰時間以及增加燃燒效率,在燃燒室添加了支架以及凹槽等駐焰機構,此舉更增加了實驗量測之困難,因此本文將使用CFD計算流體力學軟體ANSYS FLUENT進行具凹槽以及支架之超音速燃燒流場數值模擬計算,紊流模式採用SST k-ω,使用層流有限速率燃燒模式。針對具凹槽以及支架外型之燃燒室進行模擬分析,首先進行不同L/D值之凹槽進行分析,發現在L/D=2.6、3.6以及4.6比較後,值4.6所呈現之燃燒效率最好,顯示出不同L/D值之凹槽會呈現不同燃燒效率。其次進行不同燃料流率之分析,在流率4.6g/s、6.2g/s以及8g/s比較後,其流率4.6g/s所呈現之燃燒效率最好,因在其有限之燃燒室長度內,所能燃燒之燃料流率有限,且較大之燃料流率也會因導致較長燃燒點火延遲,影響燃燒效率。最後更改其注射位置,其結果與原始結果相差不多,推測由於燃料流率較小,所導致燃燒效率呈現相當一致,未來可考慮注入不同燃料流率以觀察其流場變化。

    This study uses the CFD software ANSYS FLUENT to simulate supersonic combustion flow with flame-holding mechanism, such as cavity and strut. The SST k-ω turbulence model has been adopted, and the laminar finite-rate reaction model has been employed to analyze supersonic reaction flow. Results show that among all analyzed values of L/D (i.e., 2.6, 3.6, and 4.6), L/D=4.6 has the best combustion efficiency. Different L/D values are shown to induce different combustion efficiencies. This study also analyzes different fuel flow rates. After comparing different flow rates (i.e., 4.6, 6.2, and 8 g/s), we have determined that the flow rate 4.6 g/s presents the best combustion efficiency. The results are close to the original results even after changing the injection position. Given that the fuel flow rate is the same, the combustion efficiency is consistent. Future studies may consider different fuel flow rates to observe the effect of flow field on combustion efficiency.

    摘要 i ABSTRACT iii 誌謝 x 目錄 xii 表目錄 xv 圖目錄 xvi 符號說明 xxii 第一章 導論 1 §1.1 前言 1 §1.2 文獻回顧 2 §1.3 研究動機及目的 11 第二章 數學與物理模型 13 §2.1 基本假設 14 §2.2 連續相流場統御方程式 14 §2.3 離散相之統御方程式 17 §2.4 紊流模型 27 §2.5 邊牆函數 29 §2.6 燃燒化學模型 31 第三章 數值方法 35 §3.1 控制體積轉換之傳輸方程式 35 §3.2 二階上風法 36 §3.3 壓力耦合演算法 36 §3.4 離散相計算流程 37 §3.5 鬆弛因子 37 §3.6 收斂標準 38 第四章 結果與討論 39 §4.1 燃燒室網格模型以及邊界條件 40 §4.2 網格獨立測試 41 §4.3 紊流模式之驗證 41 §4.4 具駐焰機構之燃燒室網格模型以及邊界條件 42 §4.5 具駐焰機構之燃燒室網格獨立測試 43 §4.6 具駐焰機構之超音速冷流場模擬分析 44 §4.7 具駐焰機構之超音速燃燒流場模擬分析 46 §4.8 具駐焰機構之不同L/D值燃燒流場模擬分析 48 §4.9 具駐焰機構之不同燃料流率燃燒流場模擬分析 51 §4.10 不同位置注射燃料之超音速燃燒流場分析 53 第五章 結論與未來工作 55 參考文獻 59 圖表 63   表目錄 表5.1 Grady等人所使用之入口條件[44] 63 表5.2 本文模擬所使用之入口條件 63 表5.3 煤油燃燒反應式[46] 64 表5.4 不同L/D值冷流場分析之結果 64 表5.5 不同L/D值燃燒流場分析結果 64 表5.6 不同燃料流率燃燒流場分析結果 65 表5.7 不同注射位置燃燒流場分析結果 65   圖目錄 圖1-1 Ali等人所計算之簡圖(a)具後階梯之主流,(b)不具後階梯之主流,(c)無限寬度之主流[5] 66 圖1-2 Ali等人所計算之簡圖(a)不同入口寬度,其中b為變數(b)不同自由流角度[6] 67 圖1-3 充氣液態燃料噴流在超音速流場內破碎之簡圖[12] 68 圖1-4 典型液態燃料噴流破裂過程之簡圖[19] 68 圖1-5 中心切面流場之示意圖(a)不具支架(b)具支架 69 圖2-1 純液霧化之三種機制(a)Single-Phase噴流 (b)Cavitating噴流 (c)Flipped噴流[47] 70 圖2-2 噴嘴判別狀態之樹狀圖[47] 71 圖2-3 近壁面區域示意圖[47] 71 圖4-1 壓力耦合求解器之運算流程圖 72 圖4-2 連續相以及離散相耦合之流程圖 73 圖5-1 (a)燃燒室內的測試段簡圖(b)後掠式支架之尺寸圖[44] 74 圖5-2 模擬運算用之燃燒室網格外型 74 圖5-3 邊界條件示意圖 75 圖5-4 壁面壓力分佈圖 75 圖5-5 實驗量測範圍示意圖[44] 76 圖5-6 Y=33mm處之切面速度圖,中心切面左半部為實驗數據,右半部為模擬數據[44] 77 圖5-7 Y=33mm處之切面速度分佈圖 77 圖5-8 Y=20.3mm處之切面速度圖,中心切面左半部為實驗數據,右半部為模擬數據[44] 78 圖5-9 Y=20.3mm處之速度分佈圖 78 圖5-10 Y=12.7mm處切面速度圖,中心切面左半部為實驗數據,右半部為模擬數據[44] 79 圖5-11 Y=12.7mm處之速度分佈圖 79 圖5-12模擬運算之燃燒室網格外型 80 圖5-13邊界條件示意圖 80 圖5-14壁面壓力分佈圖 81 圖5-15冷流場中心切面壓力分佈圖 81 圖5-16冷流場Z=18mm之壓力分佈圖 81 圖5-17冷流場中心切面之馬赫數分佈圖 82 圖5-18冷流場Z=18mm之馬赫數分佈圖 82 圖5-19冷流場中心切面之溫度分佈圖 82 圖5-20冷流場Z=18mm之馬赫數分佈圖 83 圖5-21冷流場中心切面速度向量圖 83 圖5-22冷流場Z=18mm之速度向量圖 83 圖5-23燃燒流場中心切面壓力分佈圖 84 圖5-24燃燒流場Z=18mm壓力分佈圖 84 圖5-25燃燒流場Y=10mm壓力分佈圖 84 圖5-26燃燒流場中心切面馬赫數分佈圖 85 圖5-27燃燒流場Z=18mm馬赫數分佈圖 85 圖5-28燃燒流場Y=10mm馬赫數分佈圖 85 圖5-29燃燒流場中心切面溫度分佈圖 86 圖5-30燃燒流場Z=18mm之溫度分佈圖 86 圖5-31燃燒流場Y=10mm之溫度分佈圖 86 圖5-32燃燒流場Y=10mm放大之溫度分佈圖 87 圖5-33燃燒流場中心切面之CO2質量分率分佈圖 87 圖5-34燃燒流場Z=18mm之CO2質量分率分佈圖 87 圖5-35燃燒流場粒子軌跡 88 圖5-36不同L/D值之壁面壓力分佈 88 圖5-37L/D=2.6之中心切面壓力分佈圖 88 圖5-38L/D=4.6之中心切面壓力分佈圖 89 圖5-39L/D=2.6之Z=18mm壓力分佈圖 89 圖5-40L/D=4.6之Z=18mm壓力分佈圖 89 圖5-41L/D=2.6之中心切面馬赫數分佈圖 90 圖5-42L/D=4.6之中心切面馬赫數分佈圖 90 圖5-43L/D=2.6之Z=18mm馬赫數分佈圖 90 圖5-44L/D=4.6之Z=18mm馬赫數分佈圖 91 圖5-45L/D=2.6之中心切面溫度分佈圖 91 圖5-46L/D=4.6之中心切面溫度分佈圖 91 圖5-47L/D=2.6之Z=18mm溫度分佈圖 92 圖5-48L/D=4.6之Z=18mm溫度分佈圖 92 圖5-49L/D=2.6中心切面CO2質量分率分佈圖 92 圖5-50L/D=4.6中心切面CO2質量分率分佈圖 93 圖5-51L/D=2.6之粒子軌跡圖 93 圖5-52L/D=4.6之粒子軌跡圖 93 圖5-53燃料6.2g/s之壓力分佈圖 94 圖5-54燃料8g/s之壓力分佈圖 94 圖5-55燃料6.2g/s之馬赫數分佈圖 94 圖5-56燃料8g/s之馬赫數分佈圖 95 圖5-57燃料6.2g/s之溫度分佈圖 95 圖5-58燃料8g/s之溫度分佈圖 95 圖5-59燃料6.2g/s之粒子軌跡 96 圖5-60燃料8g/s之粒子軌跡 96 圖5-61不同注射位置中心切面燃燒流場壓力分佈圖 96 圖5-62不同注射位置Z=18mm燃燒流場壓力分佈圖 97 圖5-63不同Y截面之燃燒流場壓力分佈圖 97 圖5-64不同注射位置中心切面燃燒流場馬赫數分佈圖 97 圖5-65不同注射位置Z=18mm燃燒流場馬赫數分佈圖 98 圖5-66不同X截面燃燒流場馬赫數分佈圖 98 圖5-67不同注射位置中心切面燃燒流場溫度分佈圖 98 圖5-68不同注射位置Z=18mm燃燒流場溫度分佈圖 99 圖5-69不同注射位置Y=10mm燃燒流場溫度分佈圖 99 圖5-70不同注射位置之粒子軌跡圖 99 圖5-71不同注射位置之中心切面速度向量圖 100 圖5-72不同注射位置之凹槽內速度向量圖 100

    [1] Lewis, M. J., “Significance of Fuel Selection for Hypersonic Vehicle Range, ”Journal of Propulsion and Power, Vol. 17, No. 6, 2001.
    [2] Waltrup, P. J., “Upper Bounds on the Flight Speed of Hydrocarbon-Fuels Scramjet Power-Vehicles,” Journal of Propulsion and Power, Vol. 17, No. 6, 2001.
    [3] Tetlow, M. R. and Doolan, C. J.,“Comparison of Hydrogen and Hydocarbon-Fueled Scramjet Engines for Orbital Insertion,” Journal of Spacrcraft and Rockets, Vol. 44, No. 2, 2007.
    [4] Powell, A., Edwards, J. T. , Norris, R.B., Numbers, K.E., and Pearce, J.A., “Development of Hydrocarbon-Fueled Scramjet Engines: The Hypersonic Technology (HyTech) Program,” Journal of Propulsion and Power, Vol. 17,No.6, pp.1170-1176, 2001.
    [5] Ali, M., Fujiwara, T., Leblanc, J. E., “Influence of Main Flow Inlet Configuration on Mixing and Flameholding in Transverse Injection into Supersonic Airstream,” International Journal of Engineering Science, Vol. 38, 1161-1180, 2000.
    [6] Ali, M., Sadrul Islam, A. K. M. and Ahmed, S., “Mixing and Flameholding with Air Inlet Configuration in Scramjet Combustor,” International Journal of Heat and Mass Transfer, Vol. 31, No. 8, 1187-1198, 2004.
    [7] Ali, M. and Sadrul Islam, A. K. M., “Study on Main Flow and Fuel Injector Configurations for Scramjet Applications,” International Journal of Heat and Mass Transfer Vol. 49, 3634-3644, 2006.
    [8] Orth, R. C. and Funk, J. A., “An Experimental and Comparative Study of Jet Penetration in Supersonic Flow,” J. SPACECRAFT, Vol. 4, No. 9, 1967.
    [9] Yu, G., Li, J. G., Zhao, J. R., Yue, L. J., Chang, X. Y. and Sung, C. J., “An Experimental Study of Kerosene Combustion in a Supersonic Model Combustor Using Effervescent Atomization,” Proceedings of the Combustion Institute, Vol. 30, 2859-2866, 2005.
    [10] Yu, G., Li, J. G., Yang, S. R., Yue, L. J., Zhang, X. Y., Huang, Y. and Sung, C. J., “Investigation of Liquid Hydrocarbon Combustion in Supersonic Flow Using Effervescent Atomization,”AIAA Paper 2002-4279.
    [11] Qian, L. J.,Lin, J. Z. and Xiong, H. B., “Simulation of Droplet-gas Flow in the Effervescent Atomization Spray with an Impinging Plate,” Chinese Journal of Chemical Engineering, Vol. 17, No. 1, 8-19, 2009.
    [12] Lin, K. C., Kirkendall, K. A., Kennedy, P. J. and Jackson, T. A., “Spray Structure of Aerated Liquid Fuel Jets in Supersonic Crossflows,” AIAA Paper 1999-2374.
    [13] Yue, L. J. and Yu, G., “Studies on Spray Characteristics of Barbotaged Atomizer,” Journal of Propulsion Technology, Vol. 24, No. 4, 2003.
    [14] Wang, L., Zhang, C. L., Wei, B. X. and Xu, X., “Experimental Investigation of Kerosene Supersonic Combustion Test Using Aerated Liquid Injectors,” Journal of Aerospace Power, Vol. 24, No. 2, 2009.
    [15] Im, K. S., Lin, K. C. and Lai, M. C., “Spray Atomization of Liquid Jet in Supersonic Cross Flows,” AIAA Paper 2005- 732.
    [16] Wang, J. F., Liu, C. and Wu, Y. Z., “Numerical Simulation of Spray Atomization in Supersonic Flows,” Modern Physics Letters B, Vol. 24, No. 13, 1299-1302, 2010.
    [17] Liu, J. and Xu, X.“Numerical simulation of atomization of liquid jet in supersonic crossflow,” Journal of Beijing University of Aeronautics and Astronautics, Vol. 36, No. 10, 2010.
    [18] Yue, L. J. and Yu, G., “Numerical Simulation of Kerosene Spray in Supersonic Cross Flow,” Journal of Propulsion Technology, Vol, 25, No. 1, 2004.
    [19] Wu, P. K., Kirkendall, K. A., Fuller, R. P. and Nejad, A., “Breakup Processes of Liquid Jets in Subsonic Crossflows,” Journal of Propulsion and Power, Vol. 13, No. 1, 1997.
    [20] Fan, X. J., Yu, G., Li, J. G. Zhang, X. Y. and Sung, C. J., “Investigation of Vaporized Kerosene Injection and Combustion in a Supersonic Model Combustor,” Journal of Propulsion and Power, Vol. 22, No. 1, 2006.
    [21] Tam, C. J., Susan, C. S. Lin, K. C. Gruber, M. and Jackson, T., “Gaseous and Liquid Injection into High-Speed Crossflows,” 43rd AIAA Aerospace Sciences Meeting and Exhibit, 2005-0301.
    [22] Pandey, K. M., and Sivasakthivel T., “Recent Advances in Scramjet Fuel Injection - A Review,” International Journal of Chemical Engineering and Applications, Vol. 1, No. 4, December 2010.
    [23] Ben-Yakar, A. , Hanson, R. K., “Experimental Investigation of Flame-Holding Capability of a Transverse Hydrogen Jet in Supersonic Cross-Flow,” Proceedings of the Twenty-Seventh International Symposium on Combustion, Combustion Inst. , Pittsburgh PA, pp. 2173–2180, 1998.
    [24] Chenault, C., F. and Beran, P. S., “K-ε and Reynolds Stress Turbulence Model Comparisons for Two-Dimensional Injection Flows,” AIAA Journal, Vol. 36, No. 8, 1988.
    [25] Chenault, C., F., Beran, P. S. and Bowersox, R. D. W., “Numerical Investigation of Supersonic Injection Using a Reynolds-Stress Turbulence Model,” AIAA Journal, Vol. 37, No. 10, 1999.
    [26] Menter, F. R., “Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications,” AIAA Journal, Vol. 32, No. 8, 1598-1605, 1994.
    [27] Liu, O. Z., Cai, Y. H., Hu, Y. L., Liu, J. H. and Ling, W. H., “The Turbulence Models for Numerical Analysis of Liquid Kerosene Supersonic Combustion,” Acta Aerodynamica Sinica, Vol. 25, No. 3, 362-367, 2007.
    [28] Li, J. G., Yu, G., Zhang, Y., Li, Y. and Qiang, D. X., “Experimental Studies on Self-Ignition of Hydrogen/Air Supersonic Combustion,” Journal of Propulsion and Power, Vol. 13, No. 4, 1997.
    [29] Liu, O. Z., Hu, Y. Z., Cai, Y. H., Liu, J. H. and Ling, W. H., “Overview of Flameholders of Cavities in Supersonic Combustion,” Journal of Propulsion Technology, Vol. 24, No. 3, 2003.
    [30] Ben-Yakar, A. and Hanson, R. K., “Cavity Flame-Holders for Ignition and Flame Stabilization in Scramjets: An Overview,” Journal of Propulsion and Power, Vol. 17, No. 4, 2001.
    [31] Gruber, M. R., Bauerle, R. A., Mathur, T. and Hsu, K. Y., “Fundamental Studies of Cavity-Based Flameholder Concepts for Supersonic Combustors,” Journal of Propulsion and Power, Vol. 17, No.1, 2001.
    [32] Wang, H. B., Wang, Z. G., Sun, M. B. and Qin, N., “Combustion Characteristics in Supersonic Combustion with Hydrogen Injection Upstream of Cavity Flameholder,” Proceedings of the Combustion Institute, Vol. 34, 2073-2082, 2012.
    [33] Rasmussen, C. C., Driscoll, J. F., Hsu, K. Y. Donbar, J. M., Gruber, M. R. and Carter, C. C., “Stability Limits of Cavity-Stabilized Flames in Supersonic Flow,” Proceedings of the Combustion Institute, Vol. 30, 2825-2833, 2005.
    [34] Neely, A. J., Riley, C., Boyce, R. R., Mudford, N. R., Houwing, A. F. P. and Gruber, M. R., “Hydrocarbon and Hydrogen-Fuelled Scramjet Cavity Flameholder Performance at High Flight Mach Numbers,”12th AIAA International Space Planes and Hypersonic Systems and Technologies, 2003-6989.
    [35] 鄭瑞圻, “使用液態碳氫燃料之超音速燃燒流場模擬分析,” 成功大學航空太空工程學系碩士論文, 2013.
    [36] Yu, G., Li, J. G., Chang, X. Y., Chen, L. H. and Sung, C. J., “Fuel Injection and Flame Stabilization in a Liquid-Kerosene-Fueled Supersonic Combustor,” Journal of Propulsion and Power, Vol. 19, No. 5, 2003.
    [37] Chakraborty, D., “Numerical Simulation of Liquid Fueled SCRAMJET Combustor Flow Fields,” International Journal of Hypersonics, Vol. 1, No. 1 13-29, 2010.
    [38] Tomioka, S., Murakami, A., Kudo, K., and Mitani, T., “Combustion Tests of a Staged Supersonic Combustor with a Strut”, Journal of Propulsion and Power, Vol. 17, No. 2, March-April 2001.
    [39] Tomioka, S., Murakami, A., Kudo, K., and Mitani, T., “Effect of Injection Configuration on Performance of a Staged Supersonic Combustor”, Journal of Propulsion and Power, Vol. 19, NO. 5, September-October 2003.
    [40] Gruber, M. R., Carter, C. D., Montes, D. R., Haubelt, L. C., King, P. I. and Hsu, K. Y., “Experimental Stusies of Pylon-Aided Fuel Injection into a Supersonic Crossflow,” Journal of Propulsion and Power, Vol. 24, No. 3, 2008.
    [41] Tam, C. J., Hsu, K. Y., Gruber, M. R. and Raffoul, C. N., “Aerodynamic Performance of an Injector Strut for a Round Scramjet Combustor,”43rd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, 2007-5403.
    [42] Hsu, K. Y., Carter, C. D., Gruber, M. R. and Tam, C. J., “Mixing Study of Strut Injectors in Supersonic Flows,” 45th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, 2009-5226.
    [43] Freeborn, A. B., King, P. I. and Gruber, M. R., “Swept-Leading-Edge Pylon Effects on a Scramjet Pylon-Cavity Flameholder Flowfield,” Journal of Propulsion and Power, Vol. 25, No. 3, 2009.
    [44] Grady, N. R., Pitz, R. W., Carter, C. D., Hsu, K. Y., Ghodke, C. and Menon, S., “Supersonic Flow over a Ramped-Wall Cavity Flame Holder with an Upstream Strut,” Journal of Propulsion and Power, Vol. 28, No. 5, 2012.
    [45] 吳政毅, “使用碳氫燃料之含凹槽超音速燃燒流場數值模擬分析,” 成功大學航空太空工程學系碩士論文, 2013.
    [46] Iannetti, A. C. and Moder, J. P., “Comparing Spray Characteristics from Reynolds Averaged Navier-Stokes (RANS) National Combustion Code (NCC) Calculations Against Experimental Data for a Turbulent Reacting Flow,” AIAA Paper, 2010-578.
    [47] ANSYS FLUENT, “ANSYS FLUENT 14.0 Theory Guide,”ANSYS Inc, 2011.
    [48] Ranz, W. E. and Marshall, W. R., Jr., “Evaporation from drops, Part II,” Chemical Engineering Progress (CEP) magazine, vol. 48, pp. 173-180, 1952.
    [49] Reitz, R. D., “Mechanisms of Atomization Processes in High-Pressure Vaporizing Sprays,” Atomization and Spray Technology, Vol. 3, pp. 309–337, 1987.
    [50] Liu, A. B., Mather, D. and Reitz, R. D.,“Modeling the effects of drop drag and breakup on fuel sprays,” SAE, 1993.
    [51] Barth, T. J. and Jespersen, D., “The design and application of upwind schemes on unstructured meshes,”Technical Report AIAA-89-0366. AIAA 27th Aerospace Sciences Meeting, Reno, Nevada, 1989.

    下載圖示 校內:2016-07-08公開
    校外:2016-07-08公開
    QR CODE