簡易檢索 / 詳目顯示

研究生: 王澤瑋
Wang, Tse-Wei
論文名稱: 高溫質子交換膜燃料電池用之含氟聚苯咪唑/離子液體複合材料合成與性質之研究
Synthesis and properties of fluorine-containing polybenzimidazole/ionic liquids composites for high-temperature proton exchange membrane fuel cells
指導教授: 許聯崇
Hsu, Lien-Chung
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 115
中文關鍵詞: 燃料電池聚苯咪唑質子交換膜離子液體
外文關鍵詞: polybenzimidazole, fuel cell, ionic liquids, PEM
相關次數: 點閱:74下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文研究利用 3,3’-diaminobenzidine 和 2,2-bis(4-carboxyphenyl)-hexafluoropropane 兩種單體合成出有機溶劑可溶之含氟聚苯咪唑高分子 (fluorine-containing Polybenzimidazole, HFPBI)。並藉由此含氟之聚苯咪唑高分子與離子液體 1-hexyl-3-methylimidazolium trifluoromethanesulfonate (HMI-Tf) 製備出質子交換膜燃料電池 (PEMFC) 用 HFPBI/HMI-Tf 複材薄膜。並以 1H-NMR、FTIR 分析鑑定此複材薄膜之組成與結構。
    由熱重損失分析 (TGA) 鑑定 HFPBI/HMI-Tf 複材薄膜之熱氧化穩定性,可發現此複材薄膜能保持熱穩定性直到 300 ℃,可以忍受較高的工作溫度,顯示出此複合膜材,可以符合新一代高溫 PEMFC 的高操作溫度需求。以交流阻抗分析方法,針對在無水狀況下,探討溫度與不同成分比例的 HMI-Tf 與 HFPBI 組成之複合膜材對於離子導電率的影響,可發現 HFPBI/HMI-Tf 複材薄膜之離子導電度可以被大幅提昇。
    然而添加 HMI-Tf 會降低 HFPBI 的機械性質和提昇其甲醇滲透率,但 HFPBI/HMI-Tf 複材薄膜仍然擁有一定的穩定性,因此 HFPBI/HMI-Tf 複材薄膜可有助於在高溫 PEMFC 上的應用。

    In this study, we report the preparation and characterization of composite membranes based on a fluorine-containing polybenzimidazole (HFPBI) with an ionic liquid, 1-hexyl-3-methylimidazolium trifluoromethanesulfonate (HMI-Tf). An organosoluble HFPBI was synthesized from 3,3’-diaminobenzidine and 2,2-bis(4-carboxyphenyl)-hexafluoropropane. The structures of the HFPBI/HMI-Tf composite membranes was characterized by 1H-NMR and FTIR, and different HMI-Tf concentrations have been prepared to investigate. The thermooxidative stability was studied with TGA, all of the membranes demonstrated terrific thermal properties, and indicated that the HFPBI/HMI-Tf composite membranes could fit the requirement for PEMFC work at higher temperatures up to 300 °C. The ionic conductivity of the HFPBI/HMI-Tf composite membranes increased with both the temperature and the HMI-Tf content. The composite membranes achieve high ionic conductivity (1.6x10-2 S/cm) at 250 ℃ under anhydrous conditions. Although the addition of HMI-Tf resulted in a slight decrease in the methanol barrier ability and mechanical properties of the HFPBI membranes, the HFPBI/HMI-Tf composite membranes have demonstrated high thermal stability up to 300 ℃, and have become attractive candidates for high-temperature (>200 ℃) polymer electrolyte membrane fuel cells.

    摘要 I Abstract II 總目錄 III 圖目錄 VII 表目錄 X Scheme 目錄 XI 第一章 緒論 1 1-1 前言 1 1-2 研究動機及目的 4 第二章 文獻回顧與原理 7 2-1 燃料電池簡介 7 2-1-1 燃料電池的由來 7 2-1-2 燃料電池的種類與其發展 9 2-2 PEMFC 與 DMFC 簡介 16 2-2-1 PEMFC 操作原理 16 2-2-2 DMFC 操作原理 17 2-2-3 PEMFC 電極觸媒之作用 19 2-3 質子交換膜簡介 21 2-4 Polybenzimidazole (PBI) 之介紹 24 2-4-1 Polybenzazoles 簡介 24 2-5 質子傳導機制 28 2-5-1 Vehicle mechanism 30 2-5-2 Grotthuss mechanism 32 2-6 離子液體簡介及其應用 35 2-6-1 離子液體簡介 35 2-6-2 離子液體之發展 36 2-7 高溫質子交換膜燃料電池的特色 38 第三章 實驗方法與步驟 43 3-1實驗材料 43 3-2實驗儀器 45 3-3實驗步驟 46 3-3-1 含氟 HFPBI 之合成 46 3-3-2 含氟 HFPBI 之薄膜製備 47 3-3-3 HFPBI 薄膜酸質子化之製備 49 3-3-4 離子液體之選擇 50 3-3-5 HFPBI/Ionic Liquids 複合薄膜製備 51 3-4 儀器分析原理與方法 54 3-4-1 固有黏度 (Inherent viscosity) 測定 54 3-4-2 傅利葉轉換紅外線光譜分析 (FTIR) 54 3-4-3 核磁共振光譜分析 (NMR) 55 3-4-4 熱重損失分析 (TGA) 56 3-4-5 熱差掃瞄分析 (DSC) 56 3-4-6 熱機械分析 (TMA) 57 3-4-7 機械性質分析 58 3-4-8 甲醇滲透分析 59 3-4-9 交流阻抗分析 (AC impedance) 60 3-4-10 質子導電率分析 64 第四章 結果與討論 65 4-1 HFPBI/Ionic Liquids 複合膜材製備及性質之探討 65 4-1-1 與 HFPBI 相容的離子液體之選擇 65 4-2 HFPBI 合成結構之鑑定 68 4-2-1 HFPBI 固有黏度測定 69 4-2-2 HFPBI 核磁共振光譜分析 (NMR) 69 4-3 HFPBI/HMI-Tf 複合膜材之結構鑑定分析 70 4-3-1 核磁共振光譜分析 (NMR) 70 4-3-2 傅利葉轉換紅外線光譜分析 (FTIR) 71 4-4 HFPBI/HMI-Tf 複合膜材之熱性質分析 72 4-4-1 熱重損失分析 (TGA) 72 4-4-2 熱差掃瞄分析 (DSC) 75 4-4-3 熱機械分析 (TMA) 75 4-5 HFPBI/HMI-Tf 複合膜材之機械性質分析 78 4-6 HFPBI/HMI-Tf 複合膜材之甲醇滲透分析 80 4-7 HFPBI/HMI-Tf 複合膜材之離子導電率分析 82 第五章 結論 102 參考文獻 104

    1. L. Jörissen, V. Gogel, J. Kerres, J. Garche, J. Power Sources, 105 (2002) 267.
    2. R. Devanathan, Energy & Environmental Science, 1 (2008) 101.
    3. K. Kreuer, S. Paddison, E. Spohr, M. Schuster, Chemical reviews, 104(2004) 4637.
    4. N. Yousfi-Steiner, P. Mocoteguy, D. Candusso, D. Hissel, J. Power Sources, 194 (2009) 130.
    5. G. Inzelt, M. Pineri, J. W. Schultze, M.A. Vorotyntsev, Electrochim. Acta, 45 (2000) 2403.
    6. M. Rikukawa, K. Sanui, Prog. Polym. Sci., 25 (2000) 1463.
    7. D.H. Jung, S.Y. Cho, D.H. Peck, D.R. Shin, J.S. Kim, J. Power Sources, 118 (2003) 205.
    8. Z.G. Shao, P. Joghee, I.M. Hsing, J. Membr. Sci., 229 (2004) 43.
    9. V.V. Binsu, R. K. Nagarale, V. K. Shahi, J. Mater. Chem., 15 (2005) 4823.
    10. Q. Li, R. He, J. Gao, J. Jensen, N. Bjerrum, J. Electrochem. Soc., 150 (2003) A1599.
    11. S.W. Chuang, S.L.C. Hsu, J. Polym. Sci. A, 44 (2006) 4508.
    12. P. Staiti, M. Minutoli, J. Power Sources, 94 (2001) 9.
    13. H. Kim, S. An, J. Kim, J. Moon, S. Cho, Y. Eun, H. Yoon, Y. Park, H. Kweon, E. Shin, Macromol. Rapid Commun. 25 (2004) 1410.
    14. J. Lobato, P. Canizares, M. Rodrigo, J. Linares, J. Aguilar, J. Membr. Sci., 306 (2007) 47.
    15. R. He, Q. Li, J. Jensen, N. Bjerrum, J. Polym. Sci. A, 45 (2007) 2989.
    16. M. Armand, F. Endres, D. MacFarlane, H. Ohno, Nature Materials, 24 (2009) 621.
    17. M. Earle, J. Esperança, M. Gilea, J. Lopes, L. Rebelo, J. Magee, K. Seddon, J. Widegren, Nature, 439 (2006), 831-834.
    18. A. Diedrichs, J. Gmehling, Fluid Phase Equilibr., 244 (2006) 68-77.
    19. S. Forsyth, J. Pringle, D. MacFarlane, Australian Journal of Chemistry, 57 (2004) 113.
    20. J. Zhang, Z. Xie, J. Zhang, Y. Tang, C. Song, T. Navessin, Z. Shi, D. Song, H. Wang, D. Wilkinson, J. Power Sources, 160 (2006) 872.
    21. 黃鎮江,“燃料電池”,全華科技圖書股份有限公司 (2003).
    22. 李瑛,王林山,“燃料電池”,治金工業出版社 (2000).
    23. Y.A. Cengel, M.A. Boles, Thermodynamics: An engineering Approach, 2nd Edition, Mc Graw-hill, New York, (1994) 763.
    24. 詹世弘, 21 世紀之星—燃料電池,第一屆燃料電池研習會(元智 大學) (2000) 桃園。
    25. 葉俊毅,聚乙烯共乙烯醇摻合磷酸與硫酸薄膜性質探討,元智大學碩士論文 (2002)。
    26. X.H. Wang, Y. Chen, H. G. Pan, R. G. Xu, S. Q. Li, L. X. Chen, C. P. Chen, Q. D. Wang, J. Alloys Compd., 293 (1999) 833.
    27. F. Alcaide, E. Brillas, P. L. Cabot, J. Electrochem. Soc., 145 (1998) 3444.
    28. N. A. Popovich, R. Govind, J. Power Sources, 112 (2002) 36.
    29. K. Yamashita, T. Taniquchi, J. Electrochem. Soc., 145 (1998) 45.
    30. R. H. Song, D.R. Shin, S. Dheenadayalan, J. Power Sources, 107 (2002) 98.
    31. K. Janowitz, M. Kah, H. Wendt, Electrochim Acta, 45 (1999) 1025.
    32. B. Fang, H. Chen, J. Electroanal. Chem., 501 (2001) 128.
    33. S.F. Corbin, X. Qiao, J. Am. Ceram. Soc., 86 (2003) 401.
    34. R.J. Gorte, S. Park, J. M. Vohs, C. H. Wang, Adv. Mater., 12 (2000)1465.
    35. H.F. Oetjen, V. M. Schmidt, U. Stimming, F. Trila, J. Electrochem. Soc., 143 (1996) 3838.
    36. Y. Bultel, P. Ozil, R. Durand, J. Appl. Electrochem., 30 (2000) 1369.
    37. 吳千舜、諸伯仁,燃料電池質子交換膜的最新發展,第62卷,第一期 (2004).
    38. K. S. Jeong, B. S. Oh, J. Power Sources, 105 (2002) 58.
    39. K. Kordesch, G. Simader, Fuel Cells and Their Application, (1996),VCH, New York.
    40. 衣寶廉, 燃料電池-原理與應用, 五南圖書出版公司, (2005).
    41. N.W. Deluca, Y.A. Elabd, J. Polymer Sci. B, 44 (2006) 2201.
    42. 薛康琳,化學,2004,62,149。
    43. J. Shim, D. Y. Yoo, and J. S. Lee, Electrochim. Acta, 45 (2000) 1943 .
    44. R. Savinell, E. Yeager, D. Tryk, U. Landau, J. Wainright, D. Weng, K. Lux, M. Litt, C. Rogers, J. Electrochem. Soc., 141 (1994) L46.
    45. G. Alberti, M. Casciola, L. Massinelli, B. Bauer, J. Membr. Sci., 185 (2001) 73.
    46. C. Yang, P. Costamagna, S. Srinivasan, J. Benziger, A. B. Bocarsly, J. Power Sources, 103 (2001) 1.
    47. P. Costamagna, C. Yang, A. B. Bocarsly, S. Srinivasan, Electrochim. Acta, 47 (2002) 1023.
    48. B. Smitha, S. Sridhar, A. A. Khan, J. Membr. Sci., 259 (2005) 10.
    49. R.F. Hutzler, D.L. Meurer, K. Kimura, P.E. Cassidy, High Perform. Polym., 4 (1992) 161.
    50. Wrasidlo, Levine, J. Polym. Sci. Part A, 2 (1964) 4795.
    51. 陳志成,中山大學材料科學研究所碩士論文 (2000).
    52. B.S. Pivovar, Polymer, 47 (2006) 4194.
    53. S.M. Aharoni , A.J. Signorelli, J. Appl. Polym. Sci., 23 (1979) 2653.
    54. Q Li, J Jensen, R Savinell, N Bjerrum, Progress in Polymer Sci., 34 (2009) 449.
    55. B.S. Pivovar, Y. Wang, E.L. Cussler, J. Membr. Sci., 154 (1999) 155.
    56. Y.L. Ma, J.S. Wainright, M.H. Litt, R.F. Savinell, J. Electrochem. Soc., 151 (2004) 8.
    57. H.T. Pu, G.H. Liu, Polym. Adv. Technol., 15 (2004) 726.
    58. R. Bouchet, S. Miller, M. Duclot, J.L. Souquet, Solid State Ionics, 145 (2001) 69.
    59. C. A. Angell, C. Liu, E. Sanchez, Nature, 362(1993) 137.
    60. T. Ueki, M. Watanabe, Macromolecules, 41 (2008) 3739-3749.
    61. J.S. Wainright, J.T. Wang, D. Weng, R.F. Savinell, M. Litt, J.Electrochem. Soc., 142 (1995) L121.
    62. J.L. Souquet, M. Duclot, M. Levy, Solid State Ionics, 85 (1996) 149.
    63. J.D. Grotthuss, Ann. Chim. LVIII, 58 (1806) 54.
    64. Z. Zhou, R. Liu, J. Wang, S. Li, M. Liu, J.L. Bredas, J. Phys. Chem. A, 110 (2006) 2323.
    65. M.H. Schuster, W.H. Meyer, Annu. Rev. Mater. Res., 33 (2003) 233.
    66. 李典益,成功大學化學研究所碩士論文 (2007).
    67. 陳泊余,CHEMISTRY(THE CHINESE CHEM. SOC., TAIPEI), 64 (2006) 235.
    68. Walden, P.; Bull Acad. Imper. Sci. (St Petersburg), (1914) 1800.
    69. Hurley, F. N.; Wier, T. P.; J. Electrochem. Soc., 98 (1951) 207.
    70. P. Bonhôte, A.P. Dias, N. Papageorgiou, K. Kalyanasundaram, M. Grätzel, Inorg. Chem., 35 (1996) 1168.
    71. 朱筱梵,成功大學化學研究所碩士論文 (2008).
    72. Department of Energy, http://www1.eere.energy.gov/hydrogenandfuelcells/pdfs/htwg rd plan.pdf. 73. Z. Zhou, S. Li, Y. Zhang, M. Liu, and W. Li, J. Am. Chem. Soc., 127 (2005) 10824.
    74. A. Schechter and R. F. Savinell, Solid State Ionics, 147 (2002) 181.
    75. J. Sun, L. R. Jordan, M. Forsyth, and D. R. MacFarlane, Electrochim. Acta, 46 (2001) 1703.
    76. K.D. Kreuer, A. Fuchs, M. Lse, M. Spaeth, J. Maier, Electrochim. Acta, 43 (1998) 1281.
    77. H.T. Pu, L.M. Tang, Polym. Int., 56 (2007) 121.
    78. S.W. Li, Z. Zhou, M.L. Liu, W. Li, J. Ukai, K. Hase, M. Nakanishi,143 Electrochim. Acta, 51 (2006) 1351.
    79. M. Schuster, W.H. Meter, G. Wegner, H.G. Herz, M. Ise, K.D. Kreuer, J. Maier, Solid State Ionics, 145 (2001) 85.
    80. R. Bouchet, E. Siebert, Solid State Ionics, 118 (1999) 287.
    81. Q.L. Wu, Z. Zhang, S.Y. Gu, J.H. Gong, Journal of Macromolecular Science, Part A: Pure and Applied Chemistry, 43 (2006) 1787.
    82. H. Pei, L. Hong, J.Y. Lee, J. Power Sources, 160 (2006) 949.
    83. D. MacFarlane, J. Pringle, K. Johansson, Lewis base ionic liquids, Chem. Commun., (2006) 1905.
    84. T. Sato, G. Masuda, K. Takagi, Electrochim. Acta, 49 (2004) 3603.
    85. C. Arbizzani et al., J. Power Sources, 185 (2008) 1575.
    86. M. Doyle, S. Choi, G. Proulx, J. Electrochem. Soc., 147 (2000) 34.
    87. B. Lalia, S. Sekhon, Chem. Phys. Lett., 425 (2006) 294.
    88. C. Tiyapiboonchaiya, J. Pringle, J. Sun, N. Byrne, P. Howlett, D. MacFarlane, M. Forsyth, Nat. Mater., 3 (2003) 29.
    89. H. Ye, J. Huang, J. Xu, N. Kodiweera, J. Power Sources, 178 (2008) 651.
    90. E. Cho, J. Park, S. Sekhon, G. Park, J. Electrochem. Soc., 156 (2009) B197.
    91. M. Navarra, S. Panero, B. Scrosati, Electrochem., Solid-State Lett., 8 (2005) A324.
    92. J.A. Asensio, S. Borros, P.G. Romero, Electrochem. Commun., 5 (2003) 967.
    93. Q.F. Li, C. Pan, J.O. Jensen, P. Noye, N.J. Bjerrum, Chem. Mater., 19 (2007) 350.
    94. J.H. Kim, H.J. Kim, T.H. Lim, H.I. Lee, J. Power Sources, 170 (2007) 275.
    95. R.H. He, Q.F. Li, G. Xiao, N.J. Bjerrum, J. Membr. Sci., 226 (2003) 169.
    96. D.A. Skoog, J.J. Leary, Saunders College Publishing US, (1992) 252.
    97. V. Tricoli, J. Electrochem. Soc., 145 (1998) 3798.
    98. H.Y. Chang, C.W. Lin, J. Membr. Sci., 218 (2003) 295.
    99. D. Rivin, C.E. Kendrick, P.W. Gibson, N.S. Schneider, Polymer, 42 (2001) 148.
    100. H.T. Pu, Q.H. Liu, G.H. Liu, J. Membr. Sci., 241 (2004) 169.
    101. P. Mukoma, B.R. Jooste, H.C.M. Vosloo, J. Membr. Sci., 243 (2004) 293.
    102. 黃雅鈴,中央大學化學研究所碩士論文 (2001)。
    103. 陳盈助,成功大學化學工程研究所碩士論文 (2002)。
    104. 洪偉銘,朝陽科技大學應用化學系碩士論文 (2004)。
    105. Y. Imai, K. Uno, Y. Iwakura, Macromol. Chem., 83 (1965) 179.
    106. H. Vogel, C.S. Marvel, J. Polym. Sci., 50 (1961) 511.
    107. J.A. Asensio, S. Borros, P.G. Romero, J. Membr. Sci., 241 (2004) 89.
    108. M. Litt, R. Ameri, Y. Wang, R. Savinell, J. Wainwright, Mater. Res. Soc. Symp. Proc., 548 (1999) 313.
    109. S.B. Qing, W. Huang, D.Y Yan, Eur. Polym. J., 41 (2005) 1589.
    110. H.J. Xu, K.C. Chen, X.X. Guo, J.H. Fang, J. Yin, Polymer, 48 (2007) 5556.
    111. A. Sannigrahi, D. Arunbabu, R.M. Sankar, T. Jana, J. Phys. Chem. B, 111 (2007) 12124.
    112. P. Musto, F.E. Karasz, W. MacKnight, J. Polym., 34 (1993) 2934.
    113. S.H. Hsiao, Y.H. Chang, Eur. Polym. J., 40 (2004) 1749.
    114. K. Uno, K. Niume, Y. Iwata, F. Toda, Y. Iwakura, J Polym Sci Polym Chem Ed., 15 (1977) 1309.
    115. T. Sugama, Mater. Lett., 58 (2004) 1307.
    116. K.Y. Wang, Y. Xiao, T.S. Chung, Chem. Eng. Sci., 61 (2006) 5807.
    117. Y. Wang, S.H. Goh, T.S. Chung, Polymer, 48 (2007) 2901.
    118. M. Berrada, F. Carriere, Y. Abboud, A. Abourriche, A. Benamara, N. Lajrhed, M. Kabbaj, M. Berrada, J. Mater. Chem., 12 (2002) 3551.
    119. C.N.R. Rao, Chemical Applications of Infrared Spectroscopy, Academic Press, New York (1963).
    120. H.A. Szymanski, Interpreted Infrared Spectra, Vol. 1, Plenum Press, New York (1964).
    121. J.A. Asensio, S. Borros, P.G. Romero, J. Electrochem. Soc., 151 (2004) A304.
    122. B. Smitha, S. Sridhar, A. Khan, Macromol., 37 (2004) 2233.

    下載圖示 校內:2020-07-01公開
    校外:2020-07-01公開
    QR CODE