簡易檢索 / 詳目顯示

研究生: 邱巨霖
Chiu, Chu-Lin
論文名稱: 壓電式PVDF水聽器與解析式超音波換能器之研究
PVDF hydrophones and Analytical Ultrasound Transducer
指導教授: 李永春
Lee, Yung-Chun
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 108
中文關鍵詞: 水下聽音器PVDF方向性靈敏度超音波換能器
外文關鍵詞: transducer, directivity, sensitivity, PVDF, hydrophone
相關次數: 點閱:124下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本論文主要在探討自製壓電式PVDF水聽器的靈敏度與方向性的問題,並將自製水聽器應用在可收集反射、散射資訊之PVDF解析式換能器設計中。本研究以PVDF壓電薄膜設計並製作針尖式、球型針尖式兩種水聽器,由實驗量測、理論模擬的方式探討兩種水聽器之靈敏度與方向性的關係,結果證實水聽器方向性的問題,可由球型針尖式水聽器的設計得到極大的改善。
      傳統聚焦式超音波換能器所接收到的反射訊號,是將作用於一壓電材料上的反射聲場對此壓電材料積分所得到的結果,如此無法將有用的聲波資訊解讀出來。因此,本論文以自製水聽器為基礎,設計並製作PVDF解析式超音波換能器,其具有接收來自待測物體表面或內部之反射與散射聲波的能力,此換能器的主要優點有三個。第一是聲波的激發端與接收端分離,因此可保護後端的訊號放大電路;第二是換能器由聲波接收端、激發端,乃至試片間的耦合液,其聲學阻抗均相當接近,因此會有相當好的匹配,可以增加入射波的強度;第三是此換能器由多個自製針尖式水聽器(Needle-type hydrophone),設計並製作出具有多點、感測面積小的聲波接收陣列,用來接收來自散射試體的聲波資訊,因此將具有空間解析聲場的能力,本研究亦對此換能器的量測特性有初步的測試。

      In this study, we fabricate needle-type PVDF hydrophones and discuss their measurement sensitivity and directivity. The hydrophones are also applied to the design of an analytical ultrasound transducer that can collect the reflected and back scattered ultrasound waves from sample. A commercial poled PVDF film is used to fabricate two different type hydrophones which possess either a flat or a spherical sensing area. Experiments and theoretical simulation are carried out to understand their performance. It is found that the spherical design in a ball-shape hydrophone can significantly improve the directivity problem of a PVDF hydrophone.
      A conventional focusing transducer has its output signal being the integral of all reflected and back scattered ultrasounds over the transducer’s sensing area, which sometimes loses useful information about defect in the sample under testing. To overcome this problem, this study fabricates a new type focusing transducer based on PVDF hydrophones. The features and advantages of this transducer are, (1) the exciting and receiving circuit of the transducer could be separated, consequently the amplifier circuit of receiver could be protected from exciting signal; (2) acoustic impedance of PVDF and coupling fluid is close, therefore, the wave transmission is well enhanced; (3) a number of independent hydrophones are formed into spherical distribution to receive reflected ultrasound independently. Experimental tests are carried out which verify the performance of this new type ultrasound transducer.

    摘要………………………………………………………………………Ⅰ Abstract…………………………………………………………………Ⅱ 致謝………………………………………………………………………Ⅲ 目錄………………………………………………………………………ⅠⅤ 表目錄……………………………………………………………………ⅤⅡ 圖目錄……………………………………………………………………ⅤⅢ 符號………………………………………………………………………ⅩⅤ 第一章  導論…………………………………………………………1 1-1    研究背景與目的…………………………………………1 1-2    文獻回顧…………………………………………………5 1-3    本文架構…………………………………………………7 第二章  理論基礎……………………………………………………9 2-1    壓電材料…………………………………………………9 2-1-1    壓電材料的種類………………………………………9 2-1-2    壓電材料的壓電效應…………………………………11 2-1-3    壓電材料的重要參數…………………………………12 2-1-4    PVDF水下聽音器的特性與應用………………………14 2-2    針尖式水聽器之方向性…………………………………19 2-2-1    針尖式水聽器方向性之推導…………………………17 2-2-2    模擬針尖式水聽器之方向性…………………………18 2-3    球型針尖式水聽器之方向性……………………………28 2-3-1    球型針尖式水聽器方向性之推導……………………29 2-3-2    模擬球型針尖式水聽器之方向性……………………33 第三章  針尖式水聽器………………………………………………38 3-1    針尖式水聽器之設計與製程……………………………38 3-1-1    針尖式水聽器…………………………………………40 3-1-2    球型針尖式水聽器……………………………………41 3-2    電壓放大器與電荷放大器之設計、模擬與製作………43 3-2-1    儀器設備………………………………………………43 3-2-2    電壓放大器……………………………………………44 3-2-3    電荷放大器……………………………………………46 3-3    硬體設備…………………………………………………50 3-4     針尖式水聽器靈敏度量測……………………………55 3-5     針尖式水聽器方向性量測……………………………61 第四章  解析式超音波換能器………………………………………75 4-1    解析式超音波換能器之簡介……………………………75 4-2    解析式超音波換能器之設計與製程……………………76 4-3    解析式超音波換能器量測系統…………………………80 4-4    解析式超音波換能器特性量測…………………………82 第五章  結論與未來展望……………………………………………96 5-1    結論………………………………………………………96 5-2    未來展望…………………………………………………98 參考文獻…………………………………………………………………99 附錄A……………………………………………………………………102 附錄B……………………………………………………………………105 附錄C……………………………………………………………………107

    [1] E. Fukada, “History and Recent Progress in Piezoelectric Polymers,” IEEE Trans. UFFC, vol. 47, no.6, pp. 1277-1290, 2000.
    [2] Y. C. Lee, J. M. Yu and S. W. Huang, “Fabrication and Characterization of a PVDF Hydrophone Array Transducer, “Key Engineering Materials, vol. 270-273, pp. 1406-1413, 2004.
    [3] F. S. Foster, G. R. Lockwood, L. K. Ryan, Harasiewicz K. A., L. Berube and A. M. Rauth, “ Principles and applications of ultrasound backscatter microscopy,” IEEE Transaction on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 40, pp. 608-577, 1993.
    [4] M. D. Sherar and F. S. Foster, “Ultrasound Backscatter Microscopy,” IEEE Ultrasonics Symposium, vol. 2, pp. 959-966, 1988.
    [5] S. Smolorz, and W. Grill. “Focusing PVDF Transducers for Acoustic Microscopy, “Res. Nondestr. Eval., 7, pp. 195-201, 1996.
    [6] G. R. Harris, “Hydrophone Measurements in Diagnostic Ultrasound Fields,” IEEE Trans. UFFC, vol. 35, no. 2, pp. 87-101, 1988.
    [7] M. D. Sherar and F. S. Foster, “The Design and Fabrication of High Frequency Poly(vinylidene Fluoride) Transducers,” Ultrasound Imaging, vol. 11, pp. 75-94, 1989.
    [8] H. Kawai, “The Piezoelectricity of Poly(vinylidene Fluoride),” Jpn. J. Appl. Phys., vol. 8, pp. 975-976, 1969.
    [9] F. Bauer, “PVDF Shock Sensors: Applications to Polar Materials and High Explosives,” IEEE Trans. UFFC, vol. 47, no. 6, pp. 1448-1454, 2000.
    [10] Y. Yuan, B. Shi and Z. Liu, “A new Multilayer Planar PVDF Standard Hydrophone and its Applications,” IEEE Trans. UFFC, vol. 42, no. 5, pp. 958-964, 1995.
    [11] A. Hurrell and F. Duck, “A Two-Dimensional Hydrophone Array Using Piezo-Electric PVDF,” IEEE Trans. UFFC, vol. 47, no. 6, pp. 1345-1353, 2000.
    [12] M. C. Ziskin and P. A. Lewin, Ultrasonic Exposimetry, CRC Press, Boca Ration, pp. 188-215, 1993.
    [13] P. A. Lewin and R. C. Chivers, “Two Miniature Ceramic Ultrasonic Probes,” J. Phys. E: Sci. Instrum., vol. 14, pp. 1420-1424, 1981.
    [14] P. A. Lewin, “Miniature Piezoelectric Polymer Ultrasonic Hydrophone Probes,” Ultrasonics, vol. 19, pp. 213-216, 1981.
    [15] M. Platte, “A Polyvinylidene Fluoride Needle Hydrophone for Ultrasonic Applications,” Ultrasonics, vol. 23, pp. 113-118, 1985.
    [16] K. C. Shotton, D. R. Bacon and R. M. Quilliam, “A PVDF Membrane Hydrophone for Operation in the Range 0.5 MHz to 15 MHz,” Ultrasonics, vol. 18, no. 3, pp. 123-126, 1980.
    [17] D. R. Bacon, “Characteristics of a PVDF Membrane Hydrophone for Use in the Range 1-100 MHz,” IEEE Trans. Son. Ultrason., SU-29, no. 1, pp. 18-25, 1982.
    [18] G. R. Harris, “Sensitivity Considerations for PVDF Hydrophone Using the Spot-Poled Membrane Design,” IEEE Trans. Son. Ultrason., SU-29, no. 6. pp. 370-377, 1982.
    [19] R. C. Preston et al., “PVDF Membrane Hydrophone Performance Properties and Their Relevance to the Measurement of the Acoustic Output of Medical Ultrasonic Equipment,” J. Phys. E: Sci. Instrum., vol. 16, pp. 786-796, 1983.
    [20] D. Xiang, N. N. Hsu, and G. V. Blessing, “The Design, Construction and Application of a Large Aperture Lens-Less Line-Focus PVDF Transducer,” Ultrasonics, SU-34, pp. 641-647, 1996.
    [21] S. Smolorz and W. Grill, “Focusing PVDF Transducers for Acoustic Microscopy,” Res Nondestr Eval, vol. 7, no. 4, pp. 195-201, 1995.
    [22] B. A. Auld, Acoustic Fields and Waves in Solids, John Wiley & Sons, New York, vol. 1, pp. 101-103, 1973.
    [23] 張建信, 高分子壓電薄膜的PSpice模擬應用於超聲波換能器, 國立成功大學機械工程研究所碩士論文, 民國89年.
    [24] 花聰傑, 微小型PVDF壓力感測器之聲學特性研究, 國立成功大學機械工程研究所碩士論文, 民國92年.
    [25] D. G. Shombert, S. W. Smith and G. R. Harris, “Angular Response of Miniature Ultrasonic Hydrophone,” Med. Phys., vol. 9, no. 4, pp. 484-492, 1982.
    [26] Goodfellow Catalogue, Goodfellow Co., PA, Berwyn, USA, 1998.
    [27] G. R. Harris, R. C. Preston, A. S. DeReqqi, “The impact of piezoelectric PVDF on medical ultrasound exposure measurements, standards, and requlations,” IEEE Transaction on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 47, pp. 1321-1335, 2000.

    下載圖示 校內:2008-08-17公開
    校外:2008-08-17公開
    QR CODE