簡易檢索 / 詳目顯示

研究生: 陳士傑
Chen, Shih-Chieh
論文名稱: 具鈣迴路碳捕捉功能的獨立式混合發電系統之設計
The design of stand-alone hybrid power system with calcium looping CO2 capture
指導教授: 吳煒
Wu, Wei
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 81
中文關鍵詞: 溫室氣體燃料電池鈣迴路
外文關鍵詞: greenhouse gases, fuel cell, calcium looping
相關次數: 點閱:96下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,由於人們不斷使用化石燃料造成溫室效應,導致氣候變遷。為了減少二氧化碳的排放問題,本研究透過固態氧化物燃料電池(SOFC)/氣渦輪機(GT)/蒸汽渦輪機(ST)結合具鈣迴路碳捕捉功能的產氫系統,設計出同時滿足低二氧化碳排放量兼具高效率之獨立式混合發電系統。
    首先使用Aspen Plus 軟體模擬具碳補捉的產氫系統,結合蒸氣重組與鈣迴路生產氫氣,並透過優化及熱整合之設計,找到最佳的操作條件。接著透過了獨立式的設計後,產氫系統不需外界熱源,更完整考量系統與二氧化碳的排放關係。
    最後,透過MATLAB/Simulink軟體建立固態氧化物燃料電池模型,結合獨立式產氫系統、氣渦輪機及蒸汽渦輪機等程序,將燃料電池出口之高溫廢熱回收進行發電,成功設計出低碳排的獨立式混合發電系統。同時提供另一種低碳排的獨立式混合發電系統之設計,將鈣迴路探捕捉程序用於捕捉燃料電池出口廢氣之二氧化碳,並探討此兩種設計對於發電效率及二氧化碳排放量的影響。所建立之混合發電系統之熱效率最高可達84.86%。

    This research provided a stand-alone, low carbon-emission and high efficiency hybrid power generation system which combines SOFC/GT/ST with a hydrogen production process based on the calcium looping process. The hydrogen production process which combines steam reforming process with calcium looping process is built in the Aspen Plus. By using Optimization and heat recovery, the process has been improved but still needs external heat resource. Therefore, this paper provide a stand-alone process design which can consider CO2 source in the production process more completely. Finally, this research using MATLAB/Simulink to build SOFC stack and successfully design a stand-alone and low CO2 emission hybrid power generation system which combined SOFC with GT and ST to recovery the heat of the flue gas from the afterburner. Additionally, this research provides another design of low CO2-emission of the hybrid power generation system which can capture CO2 in the outlet of the fuel cell through the calcium looping process. We also discuss the influence on electric efficiency and CO2 emission between these two different designs. The hybrid power generation system performed a high efficiency up to 84.86%

    摘要 II Abstract III 誌謝 IX 表目錄 XIII 圖目錄 XV 符號 XVII 第一章 緒論 1 1.1 前言 1 1.2 文獻回顧 2 1.3 研究動機與目的 4 第二章 理論與模型建立 5 2.1 具鈣迴路碳捕捉功能的產氫系統 5 2.1.1 物理性質 6 2.1.2甲烷蒸汽重組反應器 7 2.1.3 鈣迴路碳捕捉系統 9 2.2 固態氧化物燃料電池(SOFC)模組 10 2.2.1 燃料電池數學模式之假設 11 2.2.2 固態氧化物燃料電池系統模擬 12 2.2.3 燃料電池電化學模型 12 2.2.3.1 活化過電位 13 2.2.3.2 歐姆過電位 15 2.2.3.3 濃度過電位 16 2.2.4 燃料電池之動態質量守恆 17 2.2.5 燃料電池之能量守恆 19 2.2.6 燃料電池結合氣渦輪機及蒸汽渦輪機發電程序 21 第三章 具碳捕捉功能的產氫系統模擬 23 3.1 具鈣迴路碳捕捉功能的產氫系統 23 3.1.1 流程介紹與穩態分析模擬結果 24 3.1.2 其他具低碳排產氫系統之比較 27 3.2靈敏度分析及最適化分析 30 3.2.1靈敏度分析 30 3.2.2 最適化分析 33 3.2.3 熱整合 40 3.3 獨立式設計 42 第四章 混合發電系統之模擬與效能分析 46 4.1 燃料處理程序 47 4.1.1前捕捉設計之燃料處理程序 48 4.1.2後捕捉設計之燃料處理程序 49 4.2 燃料電池(SOFC)模擬與分析 51 4.2.1進料溫度及壓力對燃料電池之影響 53 4.2.2二氧化碳進料對於燃料電池之影響 55 4.2.3前捕捉設計之燃料電池效率分析 56 4.2.4後捕捉設計之燃料電池效率分析 59 4.3 氣渦輪機發電系統 62 4.3.1前捕捉設計之氣渦輪機效率分析 63 4.3.2後捕捉設計之氣渦輪機效率分析 64 4.4 蒸氣渦輪發電系統 65 4.4.1前捕捉設計之蒸氣渦輪效率分析 65 4.4.2後捕捉設計之蒸氣渦輪效率分析 67 4.5 熱回收設計分析 69 4.5.1 前捕捉設計之熱交換網路分析 70 4.5.2 後捕捉設計之熱交換網路分析 72 4.6 獨立式混合發電系統效率分析 75 第五章 結論 77 參考文獻 78

    [1] A.B. Rao, E.S. Rubin, A technical, economic, and environmental assessment of amine-based CO2 capture technology for power plant greenhouse gas control. Environmental Science and Technology, 36 (2002), p. 4467- 4475
    [2] G. Xu, H.G. Jin, Y.P. Yang, Y.J. Xu, H. Lin, L.Q. Duan. A comprehensive techno-economic analysis method for power generation systems with CO2capture. International Journal of Energy Research. 34 (2010) p. 321 - 332.
    [3] Production Hydrogen, US patented, (1931)
    [4] G.P. Curran., C.E Fink, and, E. Gorin, CO2 Acceptor Gasification Process, Fuel gasification chapter 10, (2009) pp.141-165
    [5] C. Han, D.P. Harrison, Simultaneous shift reaction and carbon dioxide separation for the direct production of hydrogen. Chemical Engineering Science, 49 (1994) p. 5875-5883.
    [6] C.R. Mueller, R. Pacciani, C.D. Bohn, S.A. Scott, J.S. Dennis, Investigation of the enhanced water gas shift reaction using natural and synthetic sorbents for the capture of CO2. Industrial and Engineering Chemistry Research. 48(2009) p 10284-10291
    [7] S.C. Singhal, K. Kendall, High temperature solid oxide fuel cells: fundamentals, design and applications. (2003): Elsevier Advanced Technology.
    [8] N. Laosiripojana, S. Assabumrungrat, Catalytic steam reforming of dimethyl ether (DME) over high surface area Ce–ZrO2 at SOFC temperature: The possible use of DME in indirect internal reforming operation (IIR-SOFC). Applied Catalysis A: General, 320 (2007) p. 105-113.
    [9] J. Xu, and G.F. Froment, Methane steam reforming, methanation and water-gas shift: I. Intrinsic kinetics. AIChE Journal, 35 (1989) p. 88-96.
    [10] W.Jin, X. Gu, S. Li, P. Huang, N. Xu, J. Shi, Experimental and simulation study on a catalyst packed tubular dense membrane reactor for partial oxidation of methane to syngas. Chemical Engineering Science 55 (2000), p. 2617-2625
    [11] M.H. Akbari; A.H. Sharafian Ardakani; M. Andisheh Tadbir, A microreactor modeling, analysis and optimization for methane autothermal reforming in fuel cell applications. Chemical Engineering Journal 166, (2011), p. 1116-1125.
    [12] P. Kuchonthar, S. Bhattachary, and A. Tsutsumi, Energy recuperation in solid oxide fuel cell (SOFC) and gas turbine (GT) combined system. Journal of Power Sources, 117 (2003) p. 7-13.
    [13] P. Kuchontharaa, S. Bhattacharyab, and A. Tsutsumi, Combinations of solid oxide fuel cell and several enhanced gas turbine cycles. Journal of Power Sources, 124 (2003) p. 65-75.
    [14] E.A. Liese, and R.S. Gemmen, Performance Comparison of Internal Reforming Against External Reforming in a Solid Oxide Fuel Cell, Gas Turbine Hybrid System. Journal of Engineering for Gas Turbines and Power, 1271 (2005). p. 86-90.
    [15] B.F. Möller, et al., Optimization of an SOFC/GT system with CO2-capture. Journal of Power Sources, 131 (2004) p. 320-326.
    [16] H. T. Yang, Optimization, identification and control of stand-alone syngas production system with low carbon emissions, in Department of Chemical Engineering. (2013), National Cheng Kung University.
    [17] A. Choudhuryn, H. Chandra, A. Arora, Application of solid oxide fuel cell technology for power generation—A review. Renewable and Sustainable Energy Reviews, 20 (2013) p. 430–442
    [18] B.R. Stanmore, P. Gilot Laboratoire Gestion des Risques et Environnement, Review—calcination and carbonation of limestone during thermal cycling for CO2 sequestration. Fuel Processing Technology 86 (2005) p. 1707 – 1743
    [19] C. R. Muller, R. Pacciani, C.D. Bohn, S.A. Scott, and J.S. Dennis, Investigation of the Enhanced Water Gas Shift Reaction Using Natural and Synthetic Sorbents for the Capture of CO2. Industrial and Engineering Chemistry Research. 48 (2009) p. 10284–10291
    [20] A. Callaghan, A. Caitlin. Kinetics and Catalysis of the Water-Gas-Shift Reaction (2006)
    [21] 邱英銓,“消耗溫室氣體的獨立式固態氧化物燃料電池/汽渦輪機混合發電系統之研究” 國立成功大學化學工程所碩士論文,(2014)。
    [22] B.Thorud, Dynamic Modelling and Characterisation of a Solid Oxide Fuel Cell Integrated in a Gas Turbine Cycle, in Department of Energy and Process Engineering. (2005) Norwegian University of Science and Technology Faculty of Engineering Science and Technology.
    [23] F. Calise, A. Palombo, and L. Vanoli, Design and partial load exergy analysis of hybrid SOFC–GT power plant. Journal of Power Sources, 158 (2006) p. 225-244.
    [24] S. Campanari, and P. Iora, Definition and sensitivity analysis of a finite volume SOFC model for a tubular cell geometry. Journal of Power Sources, 132 (2004) p. 113-126.
    [25] X.Zhang, , J. Li, and G. Li, Numerical study on the thermal characteristics in a tubular solid oxide fuel cell with indirect internal reformer. International Journal of Thermal Sciences, 48 (2009) p. 805-814.
    [26] B.A. Haberman, and J.B. Young, Three-dimensional simulation of chemically reacting gas flows in the porous support structure of an integrated-planar solid oxide fuel cell. International Journal of Heat and Mass Transfer, 47 (2004). p. 3617-3629.
    [27] R. Kandepu, et al., Modeling and control of a SOFC-GT-based autonomous power system. ENERGY, 32 (2007) p. 406-417.
    [28] J.M.Smith, H.C.V. Ness, and M.M. Abbott, Introduction to Chemical Engineering Thermodynamics. 7 ed. (2005): McGraw Hill Higher Education.
    [29] X.Jin, , Modeling of Chemical-Mechanical Couplings in Solid Oxide Cells and Reliability Analysis, in Mechanical Engineering. (2014), University of South Carolina.
    [30] Lin, J.-h., Dynamic simulation and control design of SOFC/GT hybrid power generation systems, in Institute of Chemical and Materials Engineering. 2011, National Yunlin University of Science & Technology.
    [31] J. Pirkandi, M. Ghassemi, M.H. Hamedi, R. Mohammadi, Electrochemical and thermodynamic modeling of a CHP system using tubular solid oxide fuel cell (SOFC-CHP). Journal of Cleaner Production, 29-30 (2012) p. 151-162.
    [32] M.C.Lee, S.B. Seo, J.H. Chung, S.M. Kim, Y.J. Joo, D.H. Ahn, Gas turbine combustion performance test of hydrogen and carbon monoxide synthetic gas. Fuel, 89 (2010) p. 1485-1491.

    無法下載圖示 校內:2020-08-12公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE