| 研究生: |
吳佩圜 Wu, Pei-Huan |
|---|---|
| 論文名稱: |
粒線體 PEPCK 在癌細胞所扮演的新角色 The Novel Role of Mitochondrial Phosphoenolpyruvate Carboxykinase in Cancer |
| 指導教授: |
賴明德
Lai, Ming-Derg |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 生物化學暨分子生物學研究所 Department of Biochemistry and Molecular Biology |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 76 |
| 中文關鍵詞: | 磷酸烯醇式丙酮酸羧激酶 、乳酸 、糖質新生 、癌症 、內質網 |
| 外文關鍵詞: | cancer, phosphoenolpyruvate carboxykinase, gluconeogenesis, endoplasmic reticulum, lactate |
| 相關次數: | 點閱:59 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
厭氧糖酵解(anaerobic glycolysis)以及糖質新生(gluconeogenesis)被認為對於癌細胞的生長是重要的。磷酸烯醇式丙酮酸羧激酶(Phosphoenolpyruvate carboxykinase;PEPCK)是調控糖質新生及甘油新生(glycerogenesis)(參與脂質新生過程)的重要酵素,此反應需要GTP催化將草醯乙酸(oxaloacetate)轉變為磷酸烯醇式丙酮酸(phosphoenolpyruvate)。PEPCK有兩種同功酶(isozymes),一種是位於粒線體的PEPCK-M;另ㄧ種是位於細胞質的PEPCK-C。在本篇研究中,我們著重於研究PEPCK-M在癌細胞的功能。我們發現在Huh-7和ML-1肝癌細胞中,PEPCK-M mRNA和蛋白質的表現會受到內質網壓力(ER stress)的誘導物,tunicamycin及brefeldin A所增強,此誘導並不會受到促細胞分裂劑活化性蛋白激酶(mitogen-activated protein kinase;MAPK) inhibitor影響,然而卻會受糖原合酶激酶3β(glycogen synthase kinase-3β;GSK-3β) inhibitor所抑制。我們利用核醣核酸干擾(RNAi)技術抑制Huh-7細胞株的內生PEPCK-M。PEPCK-M的缺乏抑制了細胞生長以及在軟膠(soft agar)中anchorage-independent的生長能力,並且降低調控脂質生成相關酵素基因的表現,如脂肪酸合酶(fatty acid synthase;FAS)和乙醯輔酶A羧化酶(acetyl-CoA carboxylase;ACC)。另一方面,利用Boyden chamber assay和傷口癒合(wound-healing assay)分析細胞爬行,發現PEPCK-M缺失明顯增加細胞爬行速度,爬行速度的增加可能有部份是因為乳酸(lactate)累積所造成的。總而言之,PEPCK-M減少可以抑制癌細胞生長,但也許有可能會促進癌細胞爬行。PEPCK siRNA 是否能作為新的癌症治療分子而不會誘發腫瘤轉移,未來將會在動物實驗進行更進一步的測試。
Anaerobic glycolysis and gluconeogenesis have been suggested to be important for the growth of cancer cells. Phosphoenolpyruvate carboxykinase (PEPCK) is a pace-setting enzyme in gluconeogenesis and glycerogenesis for lipogenesis. The reaction requires GTP to catalyze the conversion from oxaloacetate to phosphoenolpyruvate. Two isozymes of PEPCK are compartmentalized to the mitochondria (PEPCK-M) and cytosol (PEPCK-C). In this report, we aimed to study the function of PEPCK-M in cancer. The expression of PEPCK-M mRNA and protein was enhanced by artificial inducers of endoplasmic reticulum stress, tunicamycin and brefeldin A, in Huh-7 and ML-1 hepatoma cells. The induction was not affected by mitogen-activated protein kinase (MAPK) inhibitor, but was attenuated with glycogen synthase kinase-3β (GSK-3β) inhibitor. The endogenous PEPCK-M was suppressed by small interference RNA in Huh-7 cells. Downregulation of PEPCK-M inhibited the cell growth in 10% serum and anchorage-independent growth in soft agar. Decrease of PEPCK-M inhibited the expression of for lipogenic enzymes, such as fatty acid synthase (FAS) and acetyl-CoA carboxylase (ACC). It was interesting to note that PEPCK-M-knockdown significantly increased cellular migration rate, as demonstrated with Boyden chamber assay and wound-healing assay. The increase of migration may be in part due to accumulation of lactate in PEPCK-M knockdown cells. In summary, downregulation of PEPCK-M can inhibit the oncogenic growth of cancer cells, but may enhance the migration of cancer cells. Whether the PEPCK siRNA can function as novel cancer therapeutic agent without inducing metastasis will be tested in animal experiments in the future.
Agca, C., Greenfield, R.B., Hartwell, J.R., Donkin, S.S. Cloning and characterization of bovine cytosolic and mitochondrial PEPCK during transition to lactation. Physiol Genomics. 11(2):53-63, 2002.
Alicia G. Go´mez-Valade´s, Anna Vidal-Alabro´ , Maria Molas, Jordi Boada, Jordi Bermu´ dez, Ramon Bartrons, and Jose´ C. Perales. Overcoming Diabetes-Induced Hyperglycemia through Inhibition of Hepatic Phosphoenolpyruvate Carboxykinase (GTP) with RNAi. Molecular Therapy 13:401-410, 2006.
Barthel, A., Schmoll, D. Novel concepts in insulin regulation of hepatic gluconeogenesis. Am. J.Physiol. Endocrinol Metab. 285:E685-92, 2003.
Beckert, S., Farrahi, F., Aslam, R.S., Scheuenstuhl, H., Konigsrainer, A., Hussain, M.Z., Hunt, T.K. Lactate stimulates endothelial cell migration. Wound Repair Regen. 14:321-4, 2006.
Ballard, F.J. and Hanson, R.W. Purification of Phosphoenolpyruvate Carboxykinase from the Cytosol Fraction of Rat Liver and the Immunochemical Demonstration of Differences between This Enzyme and the Mitochondrial Phosphoenolpyruvate Carboxykinase. J. Biol. Chem. 244:5625–5630, 1969.
Brech, W., Shrago, E. and Wilken, D. Studies on pyruvate carboxylase in rat and human liver. Biochim. Biophys. Acta. 201:145–154, 1970.
Bi, M., Naczki, C., Koritzinsky, M., Fels, D., Blais, J., Hu, N., Harding, H., Novoa, I., Varia, M., Raleigh, J., Scheuner, D., Kaufman, R.J., Bell, J., Ron, D., Wouters, B.G., Koumenis, C. ER stress-regulated translation increases tolerance to extreme hypoxia and promotes tumor growth. Embo J. 24:3470–3481, 2005.
Blais, J.D., Filipenko, V., Bi, M., Ron, D., Koumenis, C.,Wouters, B.G., Bell, J.C. Transcription factor 4 is translationally regulated by hypoxic stress. Mol Cell Biol 24: 7469–7482, 2004.
Cheng, T.L., Chang, W.W., Su, I.J., Lai, M.D., Huang, W., Lei, H.Y., Chang, W.T. Therapeutic inhibition of hepatitis B virus surface antigen expression by RNA interference. Biochem Biophys Res Commun. 336:820-30, 2005.
Cornell, W., Schramm, V.L., Kerich, M.J. and Emig, F.A. Subcellular location of phosphoenolpyruvate carboxykinase in hepatocytes from fed and starved rats. J. Nutr. 116:1101–1108, 1986.
Croniger, C.M., Chakravarty, K., Olswang, Y., Cassuto, H., Reshef, L., and Hanson, R.W. Phosphoenolpyruvate carboxykinase revisited II. Control of PEPCK-C gene expression. Biochem. Mol. Biol. Educ. 30:353-62, 2002.
Cheong, J., Coligan, J.E. and Shuman, J.D. Activating transcription factor-2 regulates phosphoenolpyruvate carboxykinase transcription through a stress-inducible mitogen-activated protein kinase pathway. J. Biol. Chem. 273:22174–22178, 1998.
DeFronzo, R.A., and Ferrannini, E. Insulin resistance: a multifaceted syndrome responsible for NIDDM, obesity, hypertension, dyslipidemia, and atherosclerotic cardiovascular disease. Diabetes Care 14:173–194, 1991.
Elliott, K.R. and Pogson, C.I. The effects of starvation and experimental diabetes on phosphoenol-pyruvate carboxykinase in the guinea pig. Biochem. J. 164:357–361, 1977.
Folkman, J. Antiangiogenesis in cancer therapy--endostatin and its mechanisms of action. Exp Cell Res. 312:594-607, 2006.
Gold, J. Hydrazine sulfate: a current perspective. Nutr. Cancer. 9:59-66, 1987.
Greenlee, R.T. Cancer statistics. CA Cancer J. Clinicians 50:7–33, 2000.
Gatenby, R.G., and Gawlinski, E.T. A reaction-diffusion model of cancer invasion. Cancer Res. 56:5745–5753, 1996.
Hanson, R.W., and Reshef, L. Glyceroneogenesis revisited. Biochimie 85:1199–1205, 2003.
Hod, Y., Utter, M.F. and Hanson, R.W. The mitochondrial and cytosolic forms of avian phosphoenolpyruvate carboxykinase (GTP) are encoded by different messenger RNAs. J. Biol. Chem. 257:13787–13794, 1982.
Hockel, M., Vaupel, P. Tumor hypoxia: definitions and current clinical, biologic, and molecular aspects. J Natl Cancer Inst 93:266–276, 2001.
Hanson, R.W., and Reshef, L. Regulation of phosphoenolpyruvate carboxykinase (GTP) gene expression. Annu. Rev. Biochem. 66:581–611, 1997.
Hochachka, P.W., Buck, L.T., Doll, C.J., Land, S.C. Unifying theory of hypoxia tolerance: molecular/metabolic defense and rescue mechanisms for surviving oxygen lack. Proc Natl Acad Sci USA. 93:9493–9498, 1996.
Harding, H.P., Zhang, Y., Bertolotti, A., Zeng, H., Ron, D. Perk is essential for translational regulation and cell survival during the unfolded protein response. Mol Cell 5:897–904, 2000b.
Jeong Hae Choi, Min Jung Park, Kook Whan Kim, Yoon Ha Choi, Sun Hee Park, Won Gun An, Ung Suk Yang, JaeHun Cheong. Molecular mechanism of hypoxia-mediated hepatic gluconeogenesis by transcriptional regulation. FEBS Letters. 579:2795–2801, 2005.
Josie M M Evans, Louise A Donnelly, Alistair M Emslie-Smith, Dario R Alessi, Andrew D Morris. Metformin and reduced risk of cancer in diabetic patients. BMJ. 330:1304-1305, 2005.
Kioussis, D., Reshef, L., Cohen, H., Tilghman, S.M., Iynedjian, P.B., Ballard, F.J. and Hanson, R.W. Alterations in translatable messenger RNA coding for phosphoenolpyruvate carboxykinase (GTP) in rat liver cytosol during deinduction. J. Biol. Chem. 253:4327–4332, 1978.
Koumenis, C., Naczki, C., Koritzinsky, M., Rastani, S., Diehl, A., Sonenberg, N., Koromilas, A., Wouters, B.G. Regulation of protein synthesis by hypoxia via activation of the endoplasmic reticulum kinase PERK and phosphorylation of the translation initiation factor eIF2alpha. Mol Cell Biol 22:7405–7416, 2002.
Lochhead, P.A., Coghlan, M., Rice, S.Q., Sutherland, C. Inhibition of GSK-3 selectively reduces glucose-6-phosphatase and phosphoenolypyruvate carboxykinase gene expression. Diabetes 50:937-46, 2001.
McGrane, M.M., Yun, J.S., Moorman, A.F., Lamers, W.H., Hendrick, G.K., Arafah, B.M., Park, E.A. and Wagner, R.W. Metabolic effects of developmental, tissue-, and cell-specific expression of a chimeric phosphoenolpyruvate carboxykinase (GTP)/bovine growth hormone gene in transgenic mice. J. Biol. Chem. 265:22371–22379, 1990.
Malcolm Watford, Yaacov Hod, Yu-Bin Chiao, MertoFn. Utter, M.F. and Richard W. Hanson. The Unique Role of the Kidney in Gluconeogenesis in the Chicken. J. Biol. Chem. 256:10023–10027, 1981.
Martine Croset, Fabienne Rajas, Carine Zitoun, Jean-Marc Hurot, Sandrine Montano, and Gilles Mithieux. Rat Small Intestine Is an Insulin-Sensitive Gluconeogenic Organ. Diabetes 50(4):740-746, 2001.
Mori, K. Tripartite management of unfolded proteins in the endoplasmic reticulum. Cell 101:451–454, 2000.
Mahvash Zakikhani, Ryan Dowling, I. George Fantus, Nahum Sonenberg, and Michael Pollak. Metformin Is an AMP Kinase–Dependent Growth Inhibitor for Breast Cancer Cells. Cancer Res. 66:10269-10273, 2006.
Nordlie, R.C. and Lardy, H.A. Mammalian liver phosphoneolpyruvate carboxykinase activities. J. Biol. Chem. 238:2259–2263, 1963.
Owen, O.E., Kalhan, S.C., and Hanson, R.W. The key role of anaplerosis and cataplerosis for citric acid cycle function. J. Biol. Chem. 277:30409–30412, 2002.
Ratcliffe, P.J., O’Rourke, J.F., Maxwell, P.H., Pugh, C.W. Oxygen sensing, hypoxia-inducible factor-1 and the regulation of mammalian gene expression. J Exp Biol 201(8):1153–1162, 1998.
Suzuki, M., Yamasaki, T., Shinohata, R., Hata, M., Nakajima, H., Kono, N. Cloning and reporter analysis of human mitochondrial phosphoenolpyruvate carboxykinase gene promoter. Gene 338:157-62, 2004.
Song, L., De Sarno P, Jope, R.S. Central role of glycogen synthase kinase-3beta in endoplasmic reticulum stress-induced caspase-3 activation. J. Biol. Chem. 277:44701-8, 2002.
Semenza, G.L. Surviving ischemia: adaptive responses mediated by hypoxia-inducible factor 1. J Clin Invest 106:809–812, 2000.
Sutter, C.H., Laughner, E., and Semenza, G.L. HIF-1α protein expression is controlled by oxygen-regulated ubiquitination that is disrupted by deletions and missense mutations. Proc. Natl. Acad. Sci. 97:4748–4753, 2000.
Semenza, G.L., Artemov, D., Bedi, A., Bhujwalla, Z., Chiles, K., Feldser, D. et al. 'The metabolism of tumours': 70 years later. Novartis Found Symp. 240:251260, 2001.
Shaw, R.J., Lamia, K.A., Vasquez, D., et al. The kinase LKB1 mediates glucose homeostasis in liver and therapeutic effects of metformin. Science 310:1642–6, 2005.
Warburg, O. On the origin of cancer cells. Science 123:309–314, 1956.
Weldon, S.L., Rando, A., Matathias, A.S., Hod, Y., Kalonick, P.A., Savon, S., Cook, J.S., and Hanson, R.W. Mitochondrial phosphoenolpyruvate carboxykinase from the chicken. Comparison of the cDNA and protein sequences with the cytosolic isozyme. J. Biol. Chem. 265:7308–7317, 1990.
Wenger, R.H. Mammalian oxygen sensing, signalling and gene regulation. J. Exp. Biol. 203:1253–1263, 2000.
Wu, M.T., Wu, R.H., Hung, C.F., Cheng, T.L., Tsai, W.H., Chang, W.T. Simple and efficient DNA vector-based RNAi systems in mammalian cells. Biochem. Biophys Res Commun. 330:53-9, 2005.
Zhong, H., De Marzo, A.M., Laughner, E., Lim, M., Hilton, D.A., Zagzag, D., Buechler, P., Isaacs, W.B., Semenza, G.L., and Simons, J.W. Overexpression of hypoxia-inducible factor 1α in common human cancers and their metastases. Cancer Res. 59:5830–5835, 1999.
Zhou, W., Han, W.F., Landree, L.E., Thupari, J.N., Pinn, M.L., Bililign, T., Kim, E.K., Vadlamudi, A., Medghalchi, S.M., El Meskini, R., Ronnett, G.V., Townsend, C.A., Kuhajda, F.P. Fatty acid synthase inhibition activates AMP-activated protein kinase in SKOV3 human ovarian cancer cells. Cancer Res. 67:2964-71, 2007.