簡易檢索 / 詳目顯示

研究生: 胡博勛
Hu, Bo-Syun
論文名稱: 高分子混摻氮化鋁與氮化硼之高導熱複合材料製程研究
Process Development for AlN/Polymer and BN/Polymer High Thermal Conductivity Composite Materials
指導教授: 鍾賢龍
Chung, Shyan-Lung
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 69
中文關鍵詞: 氮化鋁/環氧樹脂複合材料複合材料製程氮化硼/環氧樹脂複合材料高導熱複合材料
外文關鍵詞: aluminum nitride/epoxy composite, composite materials manufacturing process, boron/epoxy composite, high thermal conductivity composite
相關次數: 點閱:205下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文探討高導熱氮化鋁/環氧樹脂和氮化硼/環氧樹脂複合材料的製程結果。氮化鋁複合材料部分,針對模具種類和複合材料熱壓前的造粒方式進行研究。本論文主要使用之新模具和實驗室往年常用之舊模具相比,前者可以提供複合材料較密實的受壓,在粉體未改質的條件下,新模具做成之複合材料熱擴散優於過往實驗室之經驗。本論文採取較大的造粒粒徑手法,搭配新使用的模具下,偶合改質劑對氮化鋁複合材料熱擴散改質效益優於過往實驗室之各種舊模具及造粒手法數據,且支持去年實驗室發現造粒粒徑過小會不利於氮化鋁複合材料改質劑效益之觀察,而本論文新發現氮化硼複合材料之改質效果亦有此現象。而對於無改質之氮化鋁粉體做成複合材料本身,本論文新發現較小之造粒粒徑手法,氮化鋁複合材料熱傳性質卻反而較佳,氮化硼複合材料亦有此現象。氮化硼複合材料部分,對於實驗室自製氮化硼粉體,比較不同酸洗配方及酸洗條件下,酸洗後之粉體做成複合材料之結果,由結果顯示,混合鹽酸與硝酸之配方比起僅使用鹽酸,而酸洗溫度在攝氏50度比起在室溫下酸洗,酸洗過之粉體做成複合材料熱傳性質較佳。

    This paper discusses process development for AlN/epoxy and BN/epoxy high thermal conductivity composite materials. The AlN/epoxy composite material part, use different molds and granulation methods before thermal compression as experiment parameters. The paper use the new mold compares to the old molds in lab, the former mold provide composite more uniform compression. Using the AlN powder without surface modification to make composite, the one using new mold has higher thermal diffusivity compared to past lab’s experience; Using the powder after surface modification to make composite, the one using new mold has higher thermal diffusivity enhancement by big granulation method compared to past lab’s experience by any other molds and granulation methods .The result support the corollary that the too much small granulation method will disable the surface modification for thermal diffusivity enhancement. And this paper newly find that the BN composite material has the above surface modification phenomenon. Using the AlN and BN powder without surface modification to make composite, this paper newly find that small granulation method get higher thermal diffusivity. For the BN/epoxy composite material part, using the powder made by our lab, compare that after different acid washing conditions then making composie and observing its thermal diffusivity. This paper newly find that using mixed acid containing nitric acid and hydrochloric acid condition is better than single hydrochloric acid condition and the acid washing condition in 50 degrees centigrade is better than room temperature.

    摘要 II Abstract III Extended Abstreact V 誌謝 XI 目錄 XII 表目錄 XV 圖目錄 XVII 第一章 緒論 1 1-1氮化鋁 1 1-1-1 氮化鋁簡介 1 1-1-2 氮化鋁物理與化學性質 1 1-1-3 氮化鋁合成方法 3 1-2氮化硼 5 1-2-1 氮化硼簡介 5 1-2-2 氮化硼物理與化學性質 6 1-2-3 氮化硼合成方法 6 1-3環氧樹脂 8 第二章 基礎理論與文獻回顧 9 2-1氮化鋁的表面改質 9 2-1-1氮化鋁水解性質 9 2-1-2氮化鋁表面改質 10 2-2矽氧烷偶合劑簡介 13 2-3氮化硼的表面改質 15 2-4 複合材料 15 2-4-1 複合材料簡介 15 2-4-2 高導熱複合材料簡介 17 2-5熱傳導機構 18 2-6電子元件封裝 20 2-7研究動機 21 第三章 實驗內容 23 3-1 實驗藥品與材料 23 3-2 實驗製程設備 24 3-3 實驗分析儀器與檢測原理 25 3-4 實驗流程 27 3-5 複合材料製程步驟 29 第四章 實驗結果與討論 31 4-Ι氮化鋁/高分子複合材料 31 4-Ι-1 實驗室近年氮化鋁經過表面改質後應用於複合材料之經驗 31 4-Ι-2改變製程條件對氮化鋁複合材料性質之影響 33 4-Ι-2-1研磨過篩(0.5mm)均勻小粒徑造粒後對改質效益的影響 36 4-Ι-2-2改變造粒製程後對改質效益的影響 39 4-Ι-2-3改變熱壓成型製程後對氮化鋁複合材的影響 41 4-Ι-2-4研磨過篩(0.5mm)均勻造粒對未改質氮化鋁複合材的影響 42 4-Ι-2-5氮化鋁複合材料改質步驟之效益探討 43 4-Ⅱ氮化硼/高分子複合材料 45 4-Ⅱ-1本實驗室自製之氮化硼製備複合材料 45 4-Ⅱ-1-1氮化硼粉體經過不同酸配方之酸洗條件製作成複合材料 46 4-Ⅱ-1-2氮化硼粉體經過加熱酸洗條件製作成複合材料 47 4-Ⅱ-1-3氮化硼經過不同酸配方之加熱酸洗條件製作成複合材 49 4-Ⅱ-1-4氮化硼經過超音波震盪條件後製作成複合材料 50 4-Ⅱ-2製程改變對氮化硼複合材料及偶合劑改質之影響 54 4-Ⅱ-2-1氮化硼複合材料之改質效益及造粒製程改變對氮化硼複合材料偶合劑改質之影響 54 4-Ⅱ-2-2研磨過篩(0.5mm)均勻造粒對未改質氮化硼複合材的影響 56 4-Ⅱ-2-3氮化硼複合材料改質步驟之效益探討 57 4-Ⅱ-2-4改變其他製程對氮化硼複合材料之影響 58 第五章 結論 61 參考文獻 65

    [1] Slack G. A. , R. A. Tanzilli, R. O. Pohl, and J. W. Vandersande, "The intrinsic thermal conductivity of AIN," Journal of Physics and Chemistry of Solids, vol. 48, pp. 641-647, (1987).
    [2] F. Y. E. Man, Ame. Cera. Soc., vol. 26, pp. 19-54, (1994).
    [3] G. Selvaduray and L. Sheet, "Aluminum Nitride - Review of Synthesis Methods," Materials Science and Technology, vol. 9, pp. 463-473, (1993).
    [4] F. J. M. Haussonne, "Review of the Synthesis Methods for AlN," Materials and Manufacturing Processes, vol. 10, pp. 717-755, (1995).
    [5] A. G. Merzhanov and I. P. Borovinskaya, "New Class of Combustion Processes," Combustion Science and Technology, vol. 10, pp. 195-201, (1975).
    [6] Crider J. F. , "Self-propagating High Temperature Synthesis-A Soviet Method for producing Ceramic Materials," Ceramic Engineering and Science Proceedings, vol. 3, p. 519, (1982).
    [7] S. Kumar, "Self-propagating high temperature synthesis of refractory nitrides, carbides and borides," Key Engineering Materials, vol. 56-57, pp. 183-188, (1991).
    [8] 劉益嘉, "燃燒合成氮化鋁粉體之量產製程開發," 國立成功大學碩士論文, (2011).
    [9] 陳煥煜, "使用不同形態之鋁粉以燃燒合成法製備氮化鋁粉體之製程開發及反應機構探討," 國立成功大學碩士論文, (2011).
    [10] E. Sichel, R. Miller, M. Abrahams, C. Buiocchi. Heat capacity and thermal conductivity of hexagonal pyrolytic boron nitride. Physical Review B.13(10):4607, 1976.
    [11] 徐煜翔, "燃燒合成氮化硼之製程開發," 國立成功大學博士論文, (2015).
    [12] http://kinetics.nist.gov/janaf/. [cited; Available from: http://kinetics.nist.gov/janaf/
    [13] Paine RT, Narula CK. Synthetic routes to boron nitride. Chem Rev.90(1):73-91, 1990.
    [14] Lipp A, Schwetz KA, Hunold K. Hexagonal boron nitride: Fabrication, properties and applications. J Eur Ceram Soc.5(1):3-9, 1989.
    [15] Zhi C, Bando Y, Tan C, Golberg D. Effective precursor for high yield synthesis of pure BN nanotubes. Solid State Commun.135(1-2):67-70, 2005.
    [16] Yoon SJ, Jha A. Vapour-phase reduction and the synthesis of boron-based ceramic phases. J Mater Sci.30(3):607-14, 1995.
    [17] Deepak FL, Vinod CP, Mukhopadhyay K, Govindaraj A, Rao CNR. Boron nitride nanotubes and nanowires. Chem Phys Lett.353(5-6):345-52, 2002.
    [18] Lee, H. and Noville, K., “Handbook of Epoxy Resins” Inc., New York, chap.1, 1982.
    [19] S. Fukumoto, T. Hookabe, and H. Tsubakino, "Hydrolysis behavior of Aluminum nitride in various solutions," Journal of Materials Science, vol. 35, pp. 2743-2748, (2000).
    [20] D. Hotza, O. Sahling, and P. Greil, "Hydrophobing of Aluminum Nitride Powders," Journal of Materials Science, vol. 30, pp. 127-132, (1995).
    [21] T. K. Kristoffer Krnel, "Aqueous Processing of AlN Powder," Materials Science Forum, vol. 554, pp. 189-196, (2007).
    [22] K. Krnel and T. Kosmac, "Reactivity of Aluminum nitride powder in dilute inorganic acids," Journal of the American Ceramic Society, vol. 83, pp. 1375-1378, (2000).
    [23] Kumar, R. S., et al. "Hydrolysis control of alumina and AlN mixture for aqueous colloidal processing of Aluminum oxynitride." Ceramics International 37(7): 2583-2590, (2011).
    [24] Oliveira, M., et al. "Controlling hydrolysis and dispersion of AlN powders in aqueous media." Journal of Colloid and Interface Science 261(2): 456-463, (2003).
    [25] Wu, S.-Y., et al. "Mechanical, thermal and electrical properties of Aluminum nitride/polyetherimide composites." Composites Part A: Applied Science and Manufacturing 42(11): 1573-1583, (2011).
    [26] K. L. Mittal, Silanes and Other Coupling Agents: VSP, (2009).
    [27] Kim, K. and J. Kim. "Fabrication of thermally conductive composite with surface modified boron nitride by epoxy wetting method." Ceramics International 40(4): 5181-5189, (2014).
    [28] C. S. Patrick Judeinstein, "Hybrid organic-inorganic materials: a land of multidisciplinarity," Journal of Materials Chemistry, vol. 6, pp. 511-525, (1996).
    [29] H. Lee and K. Neville, Handbook of Epoxy Resins, McGraw Hill (1982)
    [30] C. I. Nicholls and H. M. Rosenberg, J. Phys. D, Appl Phys., 7, 1247-1258 (1974)
    [31] A. A. Gallo, C. S. Bischof, K. E. Howard, S. A. Anderson, Electronic components and Technology Conference, 335 (1996)
    [32] W. Kim, J. Bae, I. Choi and Y. Kim, Polym. Eng. Sci., 39, 756 (1999)
    [33] A. A. Gallo, C. S. Bischof, K. E. Howard, S. A. Anderson,Electronic components and Technology Conference, 335 (1996)
    [34] W. H. Koh, 1996 Electronic components and Technology Conference, 343 (1996)
    [35] Y. Nakamura, M. Yamaguchi, A. Tanaka and M. Okubo, Polymer, 34, 3220 (1993)
    [36] Y. Nagai and G. Lai, J. Ceram. Soc. Jpn., 105, 213 (1997)
    [37] D. P. H. Hasselman, J. Am. Ceram. Soc., 72(6), 967 (1989).
    [38] W. D. Callister, JR.,” Materials Science and Engineering : an Introduction” 4 th, ed. (1999).
    [ 39] Anithambigai, P., et al. "Synthesis and thermal analysis of aluminium nitride filled epoxy composites and its effective application as thermal interface material for LED applications." Journal of Materials Science: Materials in Electronics 25(11): 4814-4821, (2014).
    [40] Yu, H., et al. "Thermal and insulating properties of epoxy/Aluminum nitride composites used for thermal interface material." Journal of Applied Polymer Science 124(1): 669-677, (2012).
    [41] A.W.Laubengayer, D.T.Hurd, A.E.Newkirk, J.L.Hoard. Boron. I. Preparation and Properties of Pure Crystalline Boron. J Am Chem. 65(10): 1924–1931, 1943.
    [42]. D.Ağaoğullari, et al. Synthesis of Magnesium Borates by Mechanically Activated Annealing. Metallurgical and Materials Transactions A. 43(7): 2520-2533, 2012.
    [43] 林 華 蒼, "氮化鋁與氮化硼之表面改質及高導熱複合材料之製程開發," 國立成功大學碩士論文, (2015)

    無法下載圖示 校內:2021-07-14公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE