簡易檢索 / 詳目顯示

研究生: 吳麗萍
Wu, Li-Ping
論文名稱: 製備包覆運鐵蛋白-環糊精之磁性奈米粒子及其熱效應與負載釋放 capsaicin之探討
Synthesis of transferrin-cyclodextrin coated magnetic nanoparticles for the investigation on thermal effect and the loading-releasing of capsaicin
指導教授: 許梅娟
Syu, Mei-Jywan
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 73
中文關鍵詞: 磁性奈米粒子環糊精 (β-cyclodextrin)運鐵蛋白 (transferrin)
外文關鍵詞: magnetic nanoparticles, β-cyclodextrin, transferrin
相關次數: 點閱:72下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 磁性奈米粒子的發展非常迅速,並且已廣泛應用於生物醫學領域。其獨特的超順磁特性,提供了非侵入式與非接觸式的特質,亦可藉由外加磁場的調控,將其作為體內傳遞藥物的載體,再配合專一辨識蛋白的連結以及熱治療,有效精準的抑制、甚至破壞癌細胞。
    本研究利用水相共沉澱法製備磁性奈米粒子,在其外層修飾環糊精 (β-cyclodextrin, β-CD) 以及運鐵蛋白 (transferring, Tf),利用環糊精疏水性的中軸空腔吸附、裝載抗癌藥物;而運鐵蛋白則是作為靶向配體,達到藥物傳遞以及腫瘤標靶之雙重功效,最後探討奈米磁球的熱效應。研究過程中以 X-ray繞射儀鑑定磁性奈米粒子的晶相以及估算其平均微晶尺寸;以傅立葉紅外線光譜儀 (Fourier Transform Infrared Spectroscopy, FTIR) 與紫外光/可見光光譜儀 (UV/Vis Spectrophotometer) 判斷β-CD及 transferrin分別是否修飾在 Fe3O4表面;以穿透式顯微鏡 (Transmission Electron Microscope, TEM) 分析觀察 Fe3O4、Fe3O4@β-CD與 Fe3O4@β-CD-Tf 的影像變化以及估算平均粒徑,分別為9.01 ± 1.98 nm、10.23 ± 1.62 nm與14.08 ± 2.30 nm。在磁性分析上,以超導量子干涉儀 (Superconducting Quantum Interference Device, SQUID) 量測磁滯曲線得Fe3O4、Fe3O4@β-CD與 Fe3O4@β-CD-Tf之飽和磁化量分別為69.99 emu/g、65.32 emu/g與55.62 emu/g,並且三者皆具有超順磁的性質,顯示在超順磁材料上披覆不同有機物質並不影響其磁性質。
    在醫療應用上,則是將奈米磁球作滅菌處理,探討滅菌後的磁球於檢測中是否產生變化。以具有抑制癌細胞效果之 capsaicin進行藥物包覆及釋放探討,奈米磁球的藥物釋放最高效率可維持在七小時以上。於熱效應中,將Fe3O4、Fe3O4@β-CD與 Fe3O4@β-CD-Tf放置於高頻電磁波中,可觀察到在10分鐘內奈米磁球分別可升溫至84 oC、60 oC及55 oC,顯示經過修飾後的奈米磁球之熱效應雖然明顯下降,但是依然具有良好之抗熱效果,因此初步呈現未來進一步熱治療施行之可行性。

    Research on the development of superparamagnetic nanoparticles for biomedical purposes has been widely paid attention in recent years. Due to the superparamagnetic behavior, the nanoparticles can be applied to not only non-invasive monitoring but also site-specific targeting upon an external magnetic field. Additionally, conjugation of the recognition protein onto the surfaces of the nanoparticle provides the nanocarriers targeting ability. Via which, hyperthermia treatment can directly inhibit or even kill the carcinoma.
    In this study, the superparamagnetic nanoparticles were synthesized by co-precipitation. The surface of magnetic nanoparticles (MNP) was further modified with β-cyclodextrin (β-CD) and transferring (Tf). Cyclodextrin is able to form inclusion complexes with many drugs by taking up the drug molecule into the central cavity due to its capability of being a good host for the inclusion of guest molecule. While transferrin can be used to detect the cancer cells. Combining these two species, the magnetic nanoparticles can be designed with dual functionality as drug carriers and targeting effectiveness. And the thermal effect of the iron oxide nanoparticles under applied magnetic field was also investigated. XRD was used to characterize the stretch bonds of Fe3O4 magnetic nanoparticles. Modification by β-CD and β-CD-transferrin to Fe3O4 were confirmed by FT-IR and UV/Vis spectrophotometer. The size of Fe3O4 、Fe3O4@β-CD and Fe3O4@β-CD-Tf were estimated to be 9.01 ± 1.98 nm、 10.23 ±1.62 nm and 14.08 ± 2.30 nm, respectively, by TEM. SQUID results indicated that saturation magnetization of Fe3O4, Fe3O4@β-CD, and Fe3O4@β-CD-Tf.
    For biomedical applications, the MNPs must be sterilized before use. The loading and releasing efficiency of capsaicin was investigated. Capsaicin was reported to be able to inhibit the cancer cells. The maximum loading ability of MNP was 14.72 %. Capsaicin can be within 7 hours. Under induced electro-magnetic field, the temperature of Fe3O4, Fe3O4@β-CD, and Fe3O4@β-CD-Tf could increase up to 84 oC, 60 oC, and 55 oC in 10 minutes, respectively. Consequently, it has shown that the MNPs have the feasibility toward hyperthermia therapy.

    中文摘要...............................................I Abstract...............................................II 誌謝...............................................III 目錄...............................................IV 表目錄...............................................VI 圖目錄...............................................VII 第一章 緒論...............................................1 1-1 奈米材料簡介..........................................1 1-1-1 奈米材料特性........................................1 1-1-2 磁性奈米粒子之簡介....................................3 1-1-3 磁性奈米粒子的製備....................................6 1-1-4 磁性奈米粒子之表面修飾................................10 1-1-5 磁性奈米粒子在生物醫學的應用...........................12 1-2 環狀糊精...............................................15 1-2-1 環狀糊精的結構特性....................................15 1-2-2 環糊精在藥物釋放上的應用...............................17 1-3 運鐵蛋白 (Transferrin).................................18 1-3-1 運鐵蛋白之基本性質....................................18 1-3-2 運鐵蛋白應用於藥物傳輸之作用...........................18 1-4 研究動機與目的.........................................19 第二章 實驗方法與材料.......................................20 2-1 實驗合成步驟...........................................20 2-1-1 磁性奈米粒子 (Fe3O4) 之製備...........................20 2-1-2 Fe3O4 @β-CD之製備..................................20 2-1-3 Fe3O4@β-CD-Tf之製備.................................22 2-2 磁性奈米粒子之熱效應分析.................................23 2-3 藥物包覆與釋放之流程....................................23 2-3-1 Capsaicin之定量分析方法..............................23 2-3-2 藥物包覆流程.........................................23 2-3-3 藥物釋放流程.........................................23 2-4 相關儀器分析及樣品製備..................................24 2-4-1穿透式電子顯微鏡 (Transmission Electron Microscope, TEM)24 2-4-2掃描式電子顯微鏡 (Scanning Electron Microscope, SEM) 24 2-4-3 紫外光/可見光光譜儀...................................24 2-4-4 X-ray 繞射儀........................................25 2-4-5 超導量子干涉儀 (Superconducting QUantum Interference Device, SQUID) 25 2-4-6 熱重分析儀 (Thermo Gravimetric Analyzer, TGA)........26 2-4-7 傅立葉紅外線光譜儀 (Fourier Transform Infrared Spectroscopy, FT-IR).....................................26 2-4-8 能量散佈光譜儀 (Energy Dispersive Spectrometers, EDS).......................................26 2-5 實驗藥品.......................................27 2-6 實驗儀器.......................................28 第三章 結果與討論.......................................29 3-1 磁性奈米粒子 (Fe3O4) 的製備與穩定性...................29 3-1-1 奈米磁球之穿透式電子顯微鏡 (TEM) 影像分析...............31 3-1-2 XRD之分析結果.......................................38 3-1-3 傅利葉紅外線光譜儀分析 (FT-IR分析圖)...................42 3-1-4 熱重分析儀 (Thermogravimetric Analysis, TGA)分析.....47 3-1-5 磁性奈米粒子之磁性分析................................49 3-1-6 Bicinchoninic acid (BCA)蛋白質分析...................53 3-1-7 奈米磁球之掃描式電子顯微鏡 (SEM) 影像分析...............58 3-1-8 能量散佈光譜儀 (EDS) 之表面元素分析....................60 3-2 磁性奈米粒子熱效應之探討................................61 3-3 Fe3O4@β-CD-Tf 磁性奈米粒子包覆 capsaicin 藥物之探討.....64 第四章 結論.......................................68 參考文獻.......................................69

    [1] Yonghong Ni, Xuewu Ge, Zhicheng Zhang, Qiang Ye, Fabrication and Characterization of the Plate-Shaped γ-Fe2O3 Nanocrystals, Chem. Mater. 14, 1048-1052, 2002
    [2] B. Roy Frieden, Bernard H. Soffer, de Broglie's wave hypothesis from Fisher information, Physica A, 388, 1315-1330, 2009
    [3] Helmut Goesmann, Claus Feldmann, Nanoparticulate Functional Materials, Angew. Chem. Int. Ed. 49, 1362-1395, 2010
    [4] 蔡信行、孫光中,奈米科技導論-基本原理及應用,新文京開發出版股份
    有限公司,2005
    [5] 曹茂盛,奈米科技導論,學富文化事業有限公司,2002
    [6] Diandra L. Leslie-Pelecky, Magnetic Properties of Nanostructured Materials, Chem. Mater. 8, 1770-1783, 1996
    [7] 大泊巖,圖解奈米技術,華科技圖書股份有限公司,2003
    [8] Victoria S. Coker, Neil D. Telling, Gerrit van der Laan, Richard A. D. Pattrick, Carolyn I. Pearce, Elke Arenholz, Floriana Tuna, Richard E. P. Winpenny, Jonathan R. Lloyd, Harnessing the Extracellular Bacterial Production of Nano scale Cobalt Ferrite with Exploitable Magnetic Properties, ACSNano.Vol.3,1922-1928, 2009
    [9] Morteza Mahmoudi, Shilpa Sant, Ben Wang, Sophie Laurent, Tapas Sen, Superparamagnetic iron oxide nanoparticles (SPIONs): Development, surface modification and applications in chemotherapy, Advanced Drug Delivery Reviews, 24-46, 2011
    [10] Xun Wang, Jing Zhuang, Qing Peng, Yadong Li, A general strategy for nanocrystal synthesis, nature03968, Vol 437, 1 September, 2005
    [11] Y.B. Khollam, S.R. Dhage, H.S. Potdar, S.B. Deshpande,P.P. Bakare, S.D. Kulkarni, S.K. Date, Microwave hydrothermal preparation of submicron-sized spherical magnetite (Fe3O4) powders, Materials Letters,56, 571– 577, 2002
    [12] An-Hui Lu, E. L. Salabas, Ferdi Sch th, Magnetic Nanoparticles: Synthesis, Protection, Functionalization, and Application, Angew. Chem. Int. Ed. 46, 1222 -1244, 2007
    [13] M. Jayne Lawrencea, Gareth D. Reesb, Microemulsion-based media as novel drug delivery systems, Advanced Drug Delivery Reviews, 45, 89-121, 2000
    [14] Shouheng Sun, Hao Zeng, David B. Robinson, Simone Raoux, Philip M. Rice, Shan X. Wang, Guanxiong Li, Monodisperse MFe2O4 (M = Fe, Co, Mn) Nanoparticles, J. AM. CHEM. SOC. 126, 273-279, 2004
    [15] Kyoungja Woo, Jangwon Hong, Sungmoon Choi, Hae-Weon Lee, Jae-Pyoung Ahn, Chul Sung Kim, Sang Won Lee, Easy Synthesis and Magnetic Properties of Iron Oxide Nanoparticles, Chem. Mater. 16, 2814-2818, 2004
    [16] Shouheng Sun, Hao Zeng, Size-Controlled Synthesis of Magnetite Nanoparticles, J. AM. CHEM. SOC. 124, 8204-8205, 2002
    [17] Nikhil R. Jana, Yongfen Chen, Xiaogang Peng, Size- and Shape-Controlled Magnetic (Cr, Mn, Fe, Co, Ni) Oxide Nanocrystals via a Simple and General Approach, Chem. Mater. 16, 3931-3935, 2004
    [18] Renb Massart, Preparation of Aqueous Magnetic Liquids in Alkaline and Acidic Media, IEEE TRANSACTIONS ON MAGNETICS, Vol. MAG-17, NO. 2, March 1981
    [19] Ajay Kumar Gupta, Mona Gupta, Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications, Biomaterials, 26, 3995–4021, 2005
    [20] L.C. Varanda, M. Jafelicci, P. Tartaj, K.O’ Grady, T. González-Carreño, Structural and magnetic transformation of monodispersed iron oxide particles in a reducing atmosphere, J. Appl. Phys. 92, 2079, 2002
    [21] Jiwon Lee, Tetsuhiko Isobe, Mamoru Senna, Magnetic properties of ultrafine magnetite particles and their slurries prepared via in-situ precipitation, A: Physicochemical and Engineering Aspects, 109, 121-127, 1996
    [22] Hee-Man Yang, Chan Woo Park, Min-Ah Woo, Moon II Kim, Yeong Min Jo, Hyun Gyu Park, and Jong-Duk Kim, HER2/neu Antibody Conjugated Poly(amino acid)-Coated Iron Oxide Nanoparticles for Breast Cancer MR Imaging, Biomacromolecules, 11, 2866-2872, 2010
    [23] I. W. Hamley, Nanotechnology with Soft Materials, Angew. Chem. Int. Ed. 42, 1692 -1712, 2003
    [24] Masashige Shinkai, Functional Magnetic Particles for Medical Application, Journal of Biosciencaed Bioengineering, Vol. 94, No. 6,6 OC 613. 2002
    [25] H. Maeda, J. Wu, T. Sawa, Y. Matsumura, K. Hori, Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review, Journal of Controlled Release, 65, 271-284, 2000
    [26] Hiroshi Maeda, The enhanced permeability and retention ( E P R ) effect in tumor vasculature: The key role of tumor-selective macromolecular drug targeting, Advan. Enzyme Regul., Vol. 41, pp. 189-207, 2001
    [27] Mayk Kresse, Susanne Wagner, Detlev Pfefferer, Riidiger Lawaczeck, Volker Elste Wolfhard Semmler, Targeting of ultrasmall superparamagnetic iron oxide (USPIO) particles to tumor cells in vivo by using transferrin receptor pathways, MRM 40 236-242, 1998
    [28] Morteza Mahmoudi, Mohammad A. Shokrgozar, Soroush Sardari, Mojgan K. Moghadam, Hojatollah Vali, Sophie Laurentc and Pieter Stroeve, Irreversible changes in protein conformation due to interaction with superparamagnetic iron oxide nanoparticles, Cite this: Nanoscale, 3, 1127, 2011
    [29] Patrick Wunderbaldinger, Lee Josephson and Ralph Weissleder, Tat Peptide Directs Enhanced Clearance and Hepatic Permeability of Magnetic Nanoparticles, Bioconjugate Chem, 13, 264-268, 2002
    [30] Dongyun Chen, Mengjun Jiang, Najun Li, Hongwei Gu, Qingfeng Xu, Jianfeng Ge,a Xuewei Xia and Jianmei Lu, Modification of magnetic silica/iron oxide nanocomposites with fluorescent polymethacrylic acid for cancer targeting and drug delivery, J. Mater. Chem, 20, 6422–6429, 2010
    [31] Naoki Nagatani, Masashige Shinkai, Yayoi Nagase, Hiroyuki Honda, Ken-ichiro Hata, Hirokazu Mizuno, Minoru Ueda, Takeshi Kobayashi, Gene delivery for genetically engineered mucosal cells with enhanced function, Biotechnology Letters , 22, 999–1002, 2000
    [32] Xiao-Dong Tong, Bo Xue, and Yan Sun, A Novel Magnetic Affinity Support for Protein Adsorption and Purification, Biotechnol. Prog, 17, 134-139, 2001
    [33] Chenjie Xu, Keming Xu, Hongwei Gu, Xiaofen Zhong, Zhihong Guo,Rongkun Zheng, Xixiang Zhang, and Bing Xu, Nitrilotriacetic Acid-Modified Magnetic Nanoparticles as a General Agent to Bind Histidine-Tagged Proteins, J. AM. CHEM. SOC, 126, 3392-3393, 2004
    [34] Hongwei Gu, Keming Xu, Chenjie Xu and Bing Xu, Biofunctional magnetic nanoparticles for protein separation and pathogen detection, Chem. Commun, 941–949, 2006
    [35] Charles H. Cunningham, Takayasu Arai, Phillip C. Yang, Michael V. McConnell, John M. Pauly, and Steven M. Conolly, Positive Contrast Magnetic Resonance Imaging of cells labeled with magnetic nanoparticles, Magnetic Resonance in Medicine, 53, 999–1005, 2005
    [36] Anne H. Schmieder, Patrick M. Winter, Shelton D. Caruthers, Thomas D. Harris, Todd A. Williams, John S. Allen, Elizabeth K. Lacy, Huiying Zhang, Michael J. Scott, Grace Hu, J. David Robertson, Samuel A. Wickline, and Gregory M. Lanza, Molecular MR Imaging of melanoma angiogenesis withαvβ3-targeted paramagnetic nanoparticles, Magnetic Resonance in Medicine, 53, 621–627, 2005
    [37] Mu-Yi Hua, Hao-Li Liu, Hung-Wei Yang, Pin-Yuan Chen, Rung-Ywan Tsai,Chiung-Yin Huang, I-Chou Tseng, Lee-Ang Lyu, Chih-Chun Ma, Hsiang-Jun Tang, Tzu-Chen Yen, Kuo-Chen Wei, The effectiveness of a magnetic nanoparticle-based delivery system for BCNU in the treatment of gliomas, Biomaterials, 32, 516-527, 2011
    [38] P. Moroz, S. K. Jones and B. N. Gray, Magnetically mediated hyperthermia: current status and future directions, INT. J. HYPERTHERMIA, Vol. 18, NO. 4, 267-284, 2002
    [39] Sophie Laurent, Silvio Dutz, Urs O. Häfeli, Morteza Mahmoudi, Magnetic fluid hyperthermia: Focus on superparamagnetic iron oxide nanoparticles, Advances in Colloid and Interface Science, 166, 8–23, 2011
    [40] Daniel C.F. Chan, Dmitri B. Kirpotin and Paul A. Bunn, Jr., Synthesis and evaluation of colloidal magnetic iron oxides for the site-specific radiofrequency-induced hyperthermia of cancer, Journal of Magnetism and Magnetic Materials, 122, 374-378, 1993
    [41] A. Jordan, P. Wust, H. Fahling, W. Johns, A. Hinz and R. Felix, Inductive heating of ferrimagnetic particles and magnetic fluids: physical evaluation of their potential for hyperthermia, INT. J. HYPERTHERMIA, Vol. 9, NO. 1, 51-68, 1993
    [42] Thorsteinn Loftsson , Dominique Duchene, Cyclodextrins and their pharmaceutical applications, International Journal of Pharmaceutics, 329, 1–11, 2007
    [43] Marcus E. Brewster, Thorsteinn Loftsson, Cyclodextrins as pharmaceutical solubilizers, Advanced Drug Delivery Reviews, 59, 645–666, 2007
    [44] Kenneth A. Connors, The Stability of Cyclodextrin Complexes in Solution, Chem. Rev, 97, 1325-1357,1997
    [45] 洪碩延,具標把性之環湖精包覆磁性奈米顆粒之鑑定與其熱效應及裝載辣椒鹼之探討,成功大學化學工程研究所碩士論文,2011
    [46] F. Hirayama, K. Uekama, Cyclodextrin-based controlled drug release system, Advanced Drug Delivery Reviews, 36, 125–141, 1999
    [47] Le Xin Song, Lei Bai, Xiao Min Xu, Jian He, Shu Zhen Pan, Inclusion complexation, encapsulation interaction and inclusion number in cyclodextrin chemistry, Coordination Chemistry Reviews, 253, 1276–1284, 2009
    [48] G. de Jong T, J.P. van Dijk, H.G. van Eijk, The biology of transferrin, Clinica Chimica Acta, 190, 1-46, 1997
    [49] Alajos Berczi, Klara Barabas, Joseph A. Sizensky, W. Page Faulk, Adriamycin Conjugates of human transferrin bind transferrin receptors and kill K562 and HL60 cell, Archives of biochemistry and biophysics, Vol.300, No.1, January, pp, 356-363, 1993
    [50] Monika Friqer, Thomas Sqekeres, Viktoti Sstits, Hiremugalur N. Jamyum, Hans Goldenberg, Cytotoxic effects of a doxorubicim transferrin conjugate in multidrug resistant KB cells, Biochemical Pharmacology, Vol. 51, pp. 489493, 1996
    [51] 葉晨聖,鄭豐裕,生物及醫學科技人才培育先導型計畫,生醫奈米科技教學資源中心,2007
    [52] 許輔,蛋白質濃度分析 (BCA 法),台大園藝系加工組第一研究室,2001
    [53] D. James Morre, Pin-Ju Chueh, Dorothy, M. Morre, Capsaicin inhibits preferentially the NADH oxidase and growth of transformed cells in culture, Cell Biology, Vol. 92, pp. 1831-1835, March 1995

    無法下載圖示 校內:2027-06-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE