| 研究生: |
袁國榮 Yuan, Kuo-Jung |
|---|---|
| 論文名稱: |
諾特環上的有限生成模的極限深度的存在性以及它的某些性質 The existence and some properties of the limit depth of a finitely generated module over a Noetherian ring |
| 指導教授: |
蕭仁傑
Hsiao, Jen-Chieh |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 數學系應用數學碩博士班 Department of Mathematics |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 英文 |
| 論文頁數: | 34 |
| 中文關鍵詞: | 深度 、極限深度 、深度函數 |
| 外文關鍵詞: | Depth, Limit depth, Depth function. |
| 相關次數: | 點閱:72 下載:8 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
這篇論文主要的目的是要證明理想J(在一個可交換且有單位元的諾特環中)在M/InM 上的極限深度存在,這裡I 是一個R 中的理想而M 則是一個有限生成的R-模。換句話說,我們想要證明下列極限存在,lim depth_R(J,M/I^nM).事實上,這項工作已經由M.Brodmann[4]所完成。所以我們只是系統性的列出相關的結果和證明。我們首先在第一章中討論深度的概念以及它的某些性質,然後我們在第二章中研究M/InM 的關聯質理想的集合的漸進穩定性。在最後一章中,我們使用前幾章中所得到的結果來證明J 在M/I^nM上的極限深度的存在性並擴展一些深度的性質到極限的情況中。
The main purpose of this paper is to prove that the limit depth of the ideal J (in a commutative Noetherian ring R with identity) on M/I^nM exist, where I is an ideal in R and M is a finitely generated R-module. In other words, we want to prove the following limit exists, lim depth_R(J; M/I^nM). In fact, this work has been completed by M.Brodmann[4]. So we are just list systematically the related results and proofs. We first discuss the concept and some properties of depth in Section 1,and then we study the asymptotic stability of the set of the associated primes of M/I^nM in Section 2. In the fi nal section, we use the results from the previous sections to prove the existence of the limit depth of J on M/I^nM and extend some properties of depth to the limit case.
[1] M.F.Atiyah,FRSandI.G.Macdonald. Introduction to commutative algebra. Addison-Wesley Publishing Company, Inc.,1969.
[2] Thomas W.Hungerford. Algebra. NewYork:Springer-Verlag, Inc.,1974.
[3] M.Brodmann. Asymptotic stabilityof Ass(M/I^nM). Proceedings of the American Mathematical Society, Volume74, Number I, April1979
[4] M.Brodmann. The asymptotic nature of the analytic spread. Mathematical Proceedings of the Cambridge Philosophical Society,1979,86(1):35-39.
[5] Stephen McAdam. Two applications of asymptotic prime divisors. Proceedings of the American Mathematical Society, Volume 84, Number 2, February 1982.
[6] Stephen McAdam. Asymptotic primedivisors. Springer-Verlag Berlin Heidelberg,1983.
[7] Hideyuki Matsumura. Commutative ringtheory. Cambridge, England: Cambridge University Press, 1986.
[8] Winfried Bruns and Jurgen Herzog. Cohen-Macaulay rings. Cambridge: Cambridge University Press,1993.
[9] P.J.Hilton and U.Stammbach. A course in homological algebra. Springer-Verlag NewYork,lnc.,1997.
[10] David Eisenbud. Commutative algebra with a view toward algebraic geometry. Springer-Verlag NewYork,2004.
[11] Jurgen Herzog and Takayuki Hibi. The depth of powers of an ideal. Journal of Algebra Volume 291, Issue 2, 15 September 2005,Pages 534-550.
[12] Joseph J.Rotman. An introduction to homological algebra second edition. Springer Science + Business Media,LLC,2009.
[13] Jurgen Herzog and Takayuki Hibi. Monomial ideals. Springer-Verlag London Limited,2011.
[14] Somayeh Bandari, Jurgen Herzog and Takayuki Hibi. Monomial ideals whose depth function has any given number of strict local maxima. Institut Mittag-Le er,2013.
[15] Huy TaI H a, Hop Dang Nguyen, Ngo Viet Trung, and Tran Nam Trung. Depth functions of powers of homogeneous ideals. Eprint arXiv:1904.07587, 2019.
[16] Burch,L. Codimension and analytic spread. Proc. Cambridge Philos. Soc.72(1972),369-373.
[17] The Stacks project authors. The Stacks project. https://stacks.math. columbia.edu,2019.
[18] M.Auslander,D.A.Buchsbaum. Homological dimensionin Noetherian rings II. Proc. Nat. Acad. Sci. U. S. A. vol. 42 (1956).
[19] M.Auslander,D.A.Buchsbaum. Homological dimensionin local rings. Trans.Amer.Math.Soc.vol.85(1957)pp.390-405.
[20] D.Rees. The grade of an ideal or module. Proc. Comb. Philos. Soc.53 (1957), 28-42.