| 研究生: |
黃柏偉 Huang, Bo-Wei |
|---|---|
| 論文名稱: |
多孔性硫酸鈣之結構與機械性質研究 Investigation of the Structure and Properties of Porous Calcium Sulfate |
| 指導教授: |
陳瑾惠
Chern Lin, Jiin-Huey 朱建平 Ju, Chien-Ping |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 130 |
| 中文關鍵詞: | 多孔性 、硫酸鈣 |
| 外文關鍵詞: | calcium sulfate, porosity |
| 相關次數: | 點閱:87 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
人造支架用在治療骨缺陷和骨損壞已經有超過100年的歷史,直到今天它們仍然是治療大體積骨缺陷的有效方法。做為其他用途的骨取代物仍有很大的開發潛力。
巴黎石膏是一種半水硫酸鈣的生物可吸收性陶瓷,它不貴而且消毒和製作都十分容易。
在本研究中製作了一系列的硫酸鈣支架,並探討其性質。硫酸鈣支架以溶劑鑄造鹽洗法,並且以氯化鉀混合硫酸鈣,藉由改變硫酸鈣和氯化鉀的比例控制支架的孔隙度。支架浸泡在不同溶液中也可以改變其孔隙度和強度。
Synthetic scaffold has been used in the treatment of bone defects and fractures for over 100 years. They remain a critical tool in the treatment of large-volume bone defects, and they role as potential substitues for bone graft.
Plaster of Paris is a hemihydrate of calcium sulfate bioabsorbable ceramic. It is inexpensive, can be sterilized and prepared easily.
In this study, a series of calcium sulfate scaffolds were prepared and characterized. Calcium sulfate scaffolds were prepared by solvent casting/particulate leaching method and calcium sulfate was mixed with potassium chloride. By changing calcium sulfate/ potassium chloride ratio the porosity of scaffold can be control. Scaffolds immerse in a series of can change their compressive strength and porosity.
A Comparative Histomorphometric and Histologic Study of Bony Ingrowth and Implant Substitution,’’Clin. Orthop., [232] 127–138, 1988.
A. Boyde, A. Corsi, R. Quarto, R. Cancedda, and P. Bianco, Osteoconduction in Large Macroporous Hydroxyapatite Ceramic Implants: Evidence for a Complementary Integration and Disintegration Mechanism, Bone 24 579–589, 1999.
A. E. Porter, N. Patel, J. N. Skepper, S. M. Best, and W. Bonfield, Comparison of In Vivo Dissolution Processes in Hydroxyapatite and Silicon-Substituted Hydroxyapatite Bioceramics, Biomater 24 4609–4620, 2003.
A.P. Pierson, D. Bigelow & M. Hamonic. Bone grafting with boplant: Results in thirty-three cases. J Bone & Joint Surg 50(B): 364–368, 1968.
C. E. Oxnard, Bone and Bones, Architecture and Stress, Fossils and Osteoporosis, J. Biomech., 26 Suppl. 1 63–79, 1993.
C. R. Bragdon, S. Biggs, W. F. Mulroy, K. Kawate, W. H. Harris. Defects in the cement mantle: a fatal flaw in cemented femoral stems for THR, 21st Annu. Mtg. Soc. Biomater. 5 307−314, 1995.
C. Wang, Y. Duan, B. Markovic, J. Barbara, C. R. Howlett, X. Zhang, and H. Zreiqat, Phenotypic Expression of Bone-Related Genes in Osteoblasts Grown on Calcium Phosphate Ceramics with Different Phase Compositions, Biomaterials, 25 2507–2514, 2004.
C.T. Laurencin, Y. Khan,M. Kofron, S. El-Amin, E. Botchwey, X. Yu, J.A.Cooper Jr., TheABJSNicolas Andry Award: tissue engineering of bone andligament: a 15-year perspective, Clin. Orthop. Relat. Res. 447 221–236, 2006.
Clemson Advisory Board for Biomaterials Definition of the word biomaterial, Thc 6th Annnal Intermalionel Biomaterial Symposium, April 20-24, 1974.
D. M. Liu, Fabrication of Hydroxyapatite Ceramic with Controlled Porosity, J. Mater. Sci. Mater. Med., 8 227–232, 1997.
de K.Groot Medical applications of calcium phosphate bioceramics. The Centennial Memorial Issue of The Ceramic Society of Japan 99 943-953, 1991.
E.B. Hunziker, Articular cartilage repair: basic science and clinical progress. A review of the current status and prospects, Osteoarthr. Cartil. 10 432–463, 2002.
E.M. Younger, M.W. Chapman. Morbitity at bone graft donor sites.J Orthop Trauma. 3:192−195, 1989.
H. Buchardt. The biology of bone graft repair. Clinical Orthop. 174 28-42, 1983.
H. M. Frost, ‘‘Bone ‘‘Mass’’ and the ‘‘Mechanostat’’: A Proposal,’’ Anat.Rec., 219 1–9, 1987.
J. D. de Bruijn, C. P. Klein, K. de Groot, and C. A. van Blitterswijk, ‘‘The Ultrastructure of the Bone–Hydroxyapatite Interface In Vitro,’’ J. Biomed.Mater. Res., 26 [10] 1365–1382, 1992.
J. J. Klawitter and S. F. Hulbert, Application of Porous Ceramics for the Attachment of Load Bearing Internal Orthopaedic Applications, J. Biomed. Mater. Res. Symp., 2 161–229, 1971.
J. J. Klawitter, J. G. Bagwell, A. M. Weinstein, and B. W. Sauer, ‘‘An Evaluation of Bone Growth Into Porous High Density Polyethylene,’’ J. Biomed. Mater. Res., 10 311–323, 1976.
J. R. Mauney, S. Sjostorm, J. Blumberg, R. Horan, J. P. O’Leary, G. Vunjak-Novakovic, V. Volloch, and D. L. Kaplan, Mechanical Stimulation Promotes Osteogenic Differentiation of Human Bone Marrow Stromal Cells on 3-D Partially Demineralized Bone Scaffolds In Vitro, Calcif. Tissue Int., 74 458–468, 2004.
J. Wolff, Uber die innrer Architektur der knochen und ihre Bedeutung fur die Fragen vom Knochenwachsthum, Virchows Arch. Path. Anat. Physiol., 50 389–450, 1870.
J. X. Lu, B. Flautre, K. Anselme, P. Hardouin, A. Gallur, M. Descamps, and B. Thierry, Role of Interconnections in Porous Bioceramics on Bone Recolonization In Vitro and In Vivo, J. Mater. Sci. Mater. Med., 10 111–120, 1999.
J. X. Lu, B. Flautre, K. Anselme, P. Hardouin, A. Gallur, M. Descamps, and B. Thierry, Role of Interconnections in Porous Bioceramics on Bone Recolonization In Vitro and In Vivo, J. Mater. Sci. Mater. Med., 10 111–120, 1999.
J.B. Park. Biomaterials Science and Engineering. Plenum Press. New York and London, 1985.
J.B. Park. Biomaterials Science and Engineering. Plenum Press. New York and London, 1985.
J.B. Park. Biomaterials Science and Engineering. Plenum Press. New York and London, 1985.
J.S. Wang, H. Franze´n, S. Toksvig–Larsen, L. Lidgren. the performance of Charnley total hip prostheses. Does vacuum mixing of bone cement affect heat generation?Analyses of four cement brands, J. Appl. Biomater.6:105–108, 1995.
K. A. Hing, S. M. Best, and W. Bonfield, Characterization of PorousHydroxyapatite, J. Mater. Sci. Mater. Med., 10 135–145, 1999.
K. A. Hing, S. M. Best, K. E. Tanner, W. Bonfield, and P. A. Revell,‘‘Mediation of Bone Ingrowth in Porous Hydroxyapatite Bone Graft Substitutes,’’ J. Biomed. Mater. Res. A, 68 187–200, 2004.
K. Hing, B. Annaz, S. Saeed, P. Revell, and B. T., Microporosity Enhances Bioactivity of Synthetic Bone Graft Substitutes, J. Mater. Sci. Mater. Med., 16 467–475, 2005.
K.H. Rateitschak, H.F. Wolf. Color Atlas of Dental Medicine. Thieme Medical Publishers, 1995.
Karin A. Hing, Bioceramic Bone Graft Substitutes: Influence of Porosity and Chemistry. Int. J. Appl. Ceram. Technol., 2 184–199, 2005
L. Hench and H. Paschall, ‘‘Direct Chemical Bond of Bioactive Glass–Ceramic Materials to Bone and Muscle,’’ J. Biomed. Mater. Res., 7 25–42, 1973.
L. L. Hench and J. Wilson, An Introduction to Bioceramics. World Scientific, Singapore, 1993.
M. Bohner and F. Baumgart, ‘‘Theoretical Model to Determine the Effects of Geometrical Factors on the Resorption of Calcium Phosphate Bone Substitutes,’’ Biomaterials, 25 3569–3582, 2004.
M.A. Asselmeier, R.B. Caspari, S. Bottenfield.Areviewof allograft processing and sterilization techniques and their role in transmission of the human immunodeficiency virus. Am J Sports Med. 21 170−175, 1993.
M.S.Block, T.N.Kent, Guerra. Implants in dentistry. W.B. Saunders Company,1997
N.B. Singh, B. Middendorf. Calcium sulphate hemihydrate hydration leading to gypsum crystallization. gypsum crystallization. Progress in Crystal Growth and Characterization of Materials, 53 57-77, 2007.
O. Gauthier, J. M. Bouler, E. Aguado, P. Pilet, and G. Daculsi, ‘‘Macroporous Biphasic Calcium Phosphate Ceramics: Influence of Macropore Diameter and Macroporosity Percentage on Bone Ingrowth,’’ Biomaterials, 19 [1–3] 133–139, 1998.
P. A. Rubin, J. K. Popham, J. R. Bilyk, and J. W. Shore, ‘‘Comparison of Fibrovascular Ingrowth Into Hydroxyapatite and Porous Polyethylene Orbital Implants,’’ Ophthal. Plast. Reconstr. Surg., 10 96–103, 1994.
P. S. Eggli, W. Muller, and R. K. Schenk. Porous Hydroxyapatite and Tricalcium Phosphate Cylinders with Two Different Pore Size Ranges Implanted in the Cancellous Bone of Rabbits.
R. E. Holmes. Bone Regeneration Within a Coralline Hydroxyapatite Implant. Plast. Reconstr. Surg., 63 626–633, 1979.
R. Holmes, V. Mooney, R. Bucholz, and A. Tencer, A Coralline Hydroxyapatite Bone Graft Substitute. Preliminary Report. Clin. Orthop., 188 252–262, 1984.
R. Moore William, E. Graves Stephen, GegoryiI. Bain. Synthetic Bone Graft Substitutes. ANZ J. Surg 71 354–361, 2001.
S.F. Hulbert, J.C. Bokros, L.L. Hench, Wilson J, G. Heimke. T. Kokubo, Recent progress in glass-based materials for biomedical applications. The Centennial Memorial Issue of The Ceramic Society of Japan 99 965-973, 1991.
S.F. Hulbert, L.L.Hench, D.Forbers, L.S. Bowman. History of bioceramics. Ceram Internat 8: 131-140, 1982.
S.F. Hulbert, S.J. Morrison, and J. J. Klawitter. Tissue Reaction to Three Ceramics of Porous and Non-Porous Structures. J. Biomed. Mater. Res., 6 347–374, 1972.
T. Kindt–Larsen, D. B. Smith, J. S. Jensen, Innovations in acrylic bone cement and application equipment, J. Appl. Biomater. 6 75–83, 1995.
T. Kokubo, Recent progress in glass-based materials for biomedical applications. The Centennial Memorial Issue of The Ceramic Society of Japan 99: 965-973, 1991.
T. P. Harrigan, J. A. Kareh, D. O. O’Connor, D. W. Burke, W. H. Harris, A finite element study of the initiation of failure of fixation in cemented femoral total hip components, J. Orthop. Res. 10 134–144; 1992.
W. Dietmar Hutmacher, Scaffolds in tissue engineering bone and cartilage. Biomaterials 21 2529-2543, 2000.
楊榮森, Edwards, 基本骨科學與創傷學, 合記圖書出版社, 43-47, 2001
楊榮森,B. Salter, 骨骼肌肉系統疾病和創傷, 合記圖書出版社, 7-17, 2002.
校內:2106-07-30公開