簡易檢索 / 詳目顯示

研究生: 黃柏偉
Huang, Bo-Wei
論文名稱: 多孔性硫酸鈣之結構與機械性質研究
Investigation of the Structure and Properties of Porous Calcium Sulfate
指導教授: 陳瑾惠
Chern Lin, Jiin-Huey
朱建平
Ju, Chien-Ping
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 130
中文關鍵詞: 多孔性硫酸鈣
外文關鍵詞: calcium sulfate, porosity
相關次數: 點閱:87下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 人造支架用在治療骨缺陷和骨損壞已經有超過100年的歷史,直到今天它們仍然是治療大體積骨缺陷的有效方法。做為其他用途的骨取代物仍有很大的開發潛力。
    巴黎石膏是一種半水硫酸鈣的生物可吸收性陶瓷,它不貴而且消毒和製作都十分容易。
    在本研究中製作了一系列的硫酸鈣支架,並探討其性質。硫酸鈣支架以溶劑鑄造鹽洗法,並且以氯化鉀混合硫酸鈣,藉由改變硫酸鈣和氯化鉀的比例控制支架的孔隙度。支架浸泡在不同溶液中也可以改變其孔隙度和強度。

    Synthetic scaffold has been used in the treatment of bone defects and fractures for over 100 years. They remain a critical tool in the treatment of large-volume bone defects, and they role as potential substitues for bone graft.
    Plaster of Paris is a hemihydrate of calcium sulfate bioabsorbable ceramic. It is inexpensive, can be sterilized and prepared easily.
    In this study, a series of calcium sulfate scaffolds were prepared and characterized. Calcium sulfate scaffolds were prepared by solvent casting/particulate leaching method and calcium sulfate was mixed with potassium chloride. By changing calcium sulfate/ potassium chloride ratio the porosity of scaffold can be control. Scaffolds immerse in a series of can change their compressive strength and porosity.

    目錄 摘要 I ABSTRACT II 誌謝 III 目錄 IV 表目錄 IX 圖目錄 X 第一章 前言 1 1-1 研究背景 1 1-2 生醫材料的定義 2 1-3 生醫材料的分類 3 1-3-1 金屬材料(metal) 3 1-3-2 陶瓷材料(ceramic) 4 1-3-3 高分子材料(polymer) 4 1-3-4 複合材料(composite) 5 1-4 人體骨骼組織及性質簡介 10 1-4-1 人體骨骼的構造 10 1-4-2 細胞與功能 11 1-4-3 骨骼的成分 12 1-4-4 鈣和磷的代謝 13 1-4-5 骨骼創傷與修復 14 1-4-6 骨折癒合的分期 14 1-5 骨組織工程的概念 20 1-6 研究目的 20 第二章 文獻回顧 21 2-1 人工骨取代物 21 2-1-1 骨取代物的歷史 21 2-1-2 植入材料所需具備的條件 22 2-1-3 骨取代物的生物學要求 23 2-2 生醫陶瓷的種類 24 2-2-1 生物可吸收性陶瓷 24 2-2-2 生物活性陶瓷 24 2-2-3 生物惰性陶瓷 25 2-3 生物支架 27 2-4 多孔性陶瓷對生物活性的影響 27 2-4-1 多孔性陶瓷的基本性質 27 2-4-2 支架的滲透性 28 2-4-3 支架力學 30 2-4-4 生物反應的分類 32 2-4-5 化學反應對生物活性的影響 33 2-4-6 生醫陶瓷可吸收性的來源 34 2-4-7 不可吸收性生醫陶瓷 35 2-5 支架製備方法及優缺點比較 39 2-6 醫療用硫酸鈣發展歷史 43 2-7 硫酸鈣的基本性質 45 2-7-1 α型和β型半水硫酸鈣 45 2-7-2 加速劑對硫酸鈣結晶的影響 53 2-7-3 延遲劑對硫酸鈣結晶的影響 53 2-7-4 半水化合物進行水合反應成石膏的表面型態 54 2-7-5 石膏泥漿硬化的機械性質 54 第三章 實驗步驟與方法 58 3-1 實驗步驟 58 3-1-1 多孔性支架的製作與測試 58 3-1-2 浸泡實驗 58 3-2 實驗步驟與分析原理 61 3-2-1 抗壓強度測試 61 3-2-2 掃描式電子顯微鏡(SEM)分析 62 3-2-3 XRD繞射分析 64 3-2-4 孔隙度測試 67 3-2-5 毒性測試 67 第四章 結果與討論 69 4-1 不同清洗S0條件之比較 69 4-1-1 清洗S0之實驗參數 69 4-1-2 浸泡Hanks’ solution清洗S0之抗壓強度變化 69 4-1-3 浸泡S1清洗S0之抗壓強度 71 4-1-4 浸泡S1清洗S0之XRD分析 71 4-1-5 浸泡S1清洗S0後之SEM微觀結構觀察 72 4-1-6 浸泡S1清洗S0後之EDS分析 72 4-2 添加不同比例S0與壓力對清洗後支架性質的影響 82 4-2-1 添加不同比例S0與壓力對抗壓強度的影響 82 4-2-2 添加不同比例S0與壓力對孔隙度的影響 82 4-2-3 添加不同比例S0與壓力清洗後支架之SEM微結構觀察 82 4-3 浸泡不同溶液之性質變化 88 4-3-1 浸泡t1℃濃度t1℃濃度C1M~C3MS2及S3T1對抗壓強度之影響 88 4-3-2 浸泡t1℃濃度C1M~C3MS2及S3T1之XRD分析 88 4-3-3 浸泡t1℃濃度C1M~C3MS2及S3T1SEM微觀結構觀察 88 4-3-4 浸泡t1℃濃度C4M~C6MS2及S3T1~T7對抗壓強度之影響 89 4-3-5 浸泡t1℃濃度C4M~C6MS2及S3XRD分析 89 4-3-6 浸泡t1℃C6M S2T1~T7SEM微觀結構觀察 90 4-4 支架降解測試 106 4-4-1 浸泡t1℃S1時間對抗壓強度變化 106 4-4-2 浸泡t1℃S1XRD分析 106 4-4-3 浸泡t1℃S1SEM微觀結構 106 4-4-4 浸泡t2℃細胞培養液T1~T7對抗壓強度變化 106 4-4-5 浸泡t2℃細胞培養液T1~T7之XRD分析 107 4-4-6 浸泡t2℃細胞培養液T1~T7之SEM微觀結構 107 4-4-7 浸泡t1℃S1及Hanks’ solutionT1~T3之抗壓強度變化 107 4-4-8 浸泡t1℃S1及Hanks’ solution T1~T3之XRD分析 107 4-4-9 浸泡t1℃S1及Hanks’ solutionT1~T3之SEM微觀結構 108 4-5 細胞毒性測試 122 第五章 結論 124 參考文獻 125 表目錄 表 1-3 1生醫材料的分類與應用。 7 表 1-3 2有關生醫植入材料的重要發展簡列(Part I)。 8 表 1-3 3有關生醫植入材料的重要發展簡列(Part II)。 9 表 1-4 1自然骨(bone)的機械性質。 19 表 2-2 1 人體骨骼與常見生醫陶瓷之機械性質比較。 26 表 2-2 2生醫陶瓷各種性質及用途之综合比較。 26 表 2-4 1常用的生醫陶瓷骨取代物材料 36 表 2-4 2組織反應分類 37 表 2-6 1 α和β型半水硫酸鈣性質 48 圖目錄 圖 1-4 1人體的骨骼系 16 圖 1-4 2人體骨骼構造,緻密骨皮質骨以及骨基質示意圖。 17 圖 1-4 3骨骼受創傷後自行癒合之情形與步驟。 18 圖 2-4 1 HA多孔性陶瓷結構示意圖: 38 圖 2-6 1 不同型態的硫酸鈣CaSO4xH2O 49 圖 2-6 2兩種不同的半水硫酸鈣SEM照片 50 圖 2-6 3α型和β型半水硫酸鈣的水合反應溫度對時間的關係 51 圖 2-6 4α型和β型半水硫酸鈣水合反應中電阻對時間的變化 52 圖 3-1 1實驗流程圖part I,製作多孔性支架 59 圖 3-1 2實驗流程圖part II,浸泡實驗 60 圖 3-3 1掃描式電子顯微鏡作用示意圖 63 圖 3-3 2X-RAY 繞射分析儀示意圖 66 圖 4-1 1添加50%、60% S0,施加P1Kgf製成之試片浸泡在t1℃Hanks’ solutionT1至T3天之抗壓強度變化 73 圖 4-1 2添加p1%、p2% S0,施加P1Kgf製成之試片浸泡在t2℃Hanks’ solution之抗壓強度變化 74 圖 4-1 3添加p1%、p2% S0,施加P2Kgf製成之試片浸泡在t1℃Hanks’ solution之抗壓強度變化 75 圖 4-1 4添加p1%、p2% S0,施加P2Kgf製成之試片浸泡在t2℃Hanks’ solution之抗壓強度變化 76 圖 4-1 5浸泡S1及Hanks’ solution清洗S0之抗壓強度變化 77 圖 4-1 6添加p1% S0以S1清洗T1~T4之XRD 78 圖 4-1 7添加p1% S0浸泡t1℃S1T3之SEM照片 79 圖 4-1 8添加p1% S0浸泡t1℃S1T2之SEM照片 80 圖 4-1 9浸泡t1℃S1T2~T3天清洗S0之EDS分析結果 81 圖 4-2 1添加不同S0比例對抗壓強度的影響 84 圖 4-2 2添加不同S0比例對孔隙度的影響 85 圖 4-2 3施加P2Kgf壓力下添加不同S0比例以去S1清洗T3後之SEM照片 86 圖 4-2 4施加P1Kgf壓力下添加不同S0比例以S1清洗T3後之SEM照片 87 圖 4-3 1浸泡t1℃濃度C1M~C3MS2及S3T1之抗壓強度變化 91 圖 4-3 2浸泡37℃濃度C1M~C3MS2S3T1之抗壓強度變化 92 圖 4-3 3浸泡t1℃濃度C1M~C3MS2及S3T1之XRD分析,對照組二水硫酸鈣 93 圖 4-3 4浸泡t1℃濃度C1M~C3MS2T1之SEM圖 94 圖 4-3 5浸泡t1℃濃度C4M~C6MS3T1~T7之抗壓強度變化 95 圖 4-3 6浸泡t1℃濃度C4MS2之T1~T7抗壓強度變化 96 圖 4-3 7浸泡t1℃C4S2T1~T7 SEM圖 98 圖 4-3 8浸泡t1℃C5M~C6MS2之抗壓強度變化 99 圖 4-3 9浸泡t1℃C6MS2之孔隙度變化 99 圖 4-3 10浸泡t1℃C5MS2之XRD分析 100 圖 4-3 11浸泡t1℃C6M S2之XRD分析 100 圖 4-3 12浸泡t1℃C6MS2SEM圖 102 圖 4-3 13浸泡t1℃C6MS2T7~T10之抗壓強度變化 103 圖 4-3 14浸泡t1℃C6MS2T7~T10之XRD分析 104 圖 4-3 15浸泡t1℃C6MS2T8 ~ T10之SEM照片 105 圖 4-4 1浸泡t1℃S1時間對抗壓強度變化 109 圖 4-4 2浸泡t1℃S1清洗S2不同時間之XRD分析 110 圖 4-4 3浸泡t1℃S1清洗S2之SEM照片 111 圖 4-4 4浸泡S1清洗S2T3之EDS分析結果 112 圖 4-4 5浸泡t2℃細胞培養液T1~T7之抗壓強度變化 113 圖 4-4 6浸泡t2℃細胞培養液T1~T7之XRD分析 114 圖 4-4 7浸泡t2℃細胞培養液T1~T3之SEM照片 115 圖 4-4 8浸泡t2℃細胞培養液T4~T7之SEM照片 116 圖 4-4 9浸泡t1℃S1及Hanks’ solution T1~T3之抗壓強度變化 117 圖 4-4 10浸泡t1℃S1及Hanks’ solution T1~T3之孔隙度變化 118 圖 4-4 11浸泡t1℃S1及Hanks’ solution T1~T3清洗S2之XRD分析 119 圖 4-4 12浸泡t1℃去S1T1~T3之SEM照片 120 圖 4-4 13浸泡t1℃Hanks’ solution T1~T3清洗S2之SEM照片 121 圖 4-5 1多孔性硫酸鈣細胞毒性測試 123

    A Comparative Histomorphometric and Histologic Study of Bony Ingrowth and Implant Substitution,’’Clin. Orthop., [232] 127–138, 1988.
    A. Boyde, A. Corsi, R. Quarto, R. Cancedda, and P. Bianco, Osteoconduction in Large Macroporous Hydroxyapatite Ceramic Implants: Evidence for a Complementary Integration and Disintegration Mechanism, Bone 24 579–589, 1999.
    A. E. Porter, N. Patel, J. N. Skepper, S. M. Best, and W. Bonfield, Comparison of In Vivo Dissolution Processes in Hydroxyapatite and Silicon-Substituted Hydroxyapatite Bioceramics, Biomater 24 4609–4620, 2003.
    A.P. Pierson, D. Bigelow & M. Hamonic. Bone grafting with boplant: Results in thirty-three cases. J Bone & Joint Surg 50(B): 364–368, 1968.
    C. E. Oxnard, Bone and Bones, Architecture and Stress, Fossils and Osteoporosis, J. Biomech., 26 Suppl. 1 63–79, 1993.
    C. R. Bragdon, S. Biggs, W. F. Mulroy, K. Kawate, W. H. Harris. Defects in the cement mantle: a fatal flaw in cemented femoral stems for THR, 21st Annu. Mtg. Soc. Biomater. 5 307−314, 1995.
    C. Wang, Y. Duan, B. Markovic, J. Barbara, C. R. Howlett, X. Zhang, and H. Zreiqat, Phenotypic Expression of Bone-Related Genes in Osteoblasts Grown on Calcium Phosphate Ceramics with Different Phase Compositions, Biomaterials, 25 2507–2514, 2004.
    C.T. Laurencin, Y. Khan,M. Kofron, S. El-Amin, E. Botchwey, X. Yu, J.A.Cooper Jr., TheABJSNicolas Andry Award: tissue engineering of bone andligament: a 15-year perspective, Clin. Orthop. Relat. Res. 447 221–236, 2006.
    Clemson Advisory Board for Biomaterials Definition of the word biomaterial, Thc 6th Annnal Intermalionel Biomaterial Symposium, April 20-24, 1974.
    D. M. Liu, Fabrication of Hydroxyapatite Ceramic with Controlled Porosity, J. Mater. Sci. Mater. Med., 8 227–232, 1997.
    de K.Groot Medical applications of calcium phosphate bioceramics. The Centennial Memorial Issue of The Ceramic Society of Japan 99 943-953, 1991.
    E.B. Hunziker, Articular cartilage repair: basic science and clinical progress. A review of the current status and prospects, Osteoarthr. Cartil. 10 432–463, 2002.
    E.M. Younger, M.W. Chapman. Morbitity at bone graft donor sites.J Orthop Trauma. 3:192−195, 1989.
    H. Buchardt. The biology of bone graft repair. Clinical Orthop. 174 28-42, 1983.
    H. M. Frost, ‘‘Bone ‘‘Mass’’ and the ‘‘Mechanostat’’: A Proposal,’’ Anat.Rec., 219 1–9, 1987.
    J. D. de Bruijn, C. P. Klein, K. de Groot, and C. A. van Blitterswijk, ‘‘The Ultrastructure of the Bone–Hydroxyapatite Interface In Vitro,’’ J. Biomed.Mater. Res., 26 [10] 1365–1382, 1992.
    J. J. Klawitter and S. F. Hulbert, Application of Porous Ceramics for the Attachment of Load Bearing Internal Orthopaedic Applications, J. Biomed. Mater. Res. Symp., 2 161–229, 1971.
    J. J. Klawitter, J. G. Bagwell, A. M. Weinstein, and B. W. Sauer, ‘‘An Evaluation of Bone Growth Into Porous High Density Polyethylene,’’ J. Biomed. Mater. Res., 10 311–323, 1976.
    J. R. Mauney, S. Sjostorm, J. Blumberg, R. Horan, J. P. O’Leary, G. Vunjak-Novakovic, V. Volloch, and D. L. Kaplan, Mechanical Stimulation Promotes Osteogenic Differentiation of Human Bone Marrow Stromal Cells on 3-D Partially Demineralized Bone Scaffolds In Vitro, Calcif. Tissue Int., 74 458–468, 2004.
    J. Wolff, Uber die innrer Architektur der knochen und ihre Bedeutung fur die Fragen vom Knochenwachsthum, Virchows Arch. Path. Anat. Physiol., 50 389–450, 1870.
    J. X. Lu, B. Flautre, K. Anselme, P. Hardouin, A. Gallur, M. Descamps, and B. Thierry, Role of Interconnections in Porous Bioceramics on Bone Recolonization In Vitro and In Vivo, J. Mater. Sci. Mater. Med., 10 111–120, 1999.
    J. X. Lu, B. Flautre, K. Anselme, P. Hardouin, A. Gallur, M. Descamps, and B. Thierry, Role of Interconnections in Porous Bioceramics on Bone Recolonization In Vitro and In Vivo, J. Mater. Sci. Mater. Med., 10 111–120, 1999.
    J.B. Park. Biomaterials Science and Engineering. Plenum Press. New York and London, 1985.
    J.B. Park. Biomaterials Science and Engineering. Plenum Press. New York and London, 1985.
    J.B. Park. Biomaterials Science and Engineering. Plenum Press. New York and London, 1985.
    J.S. Wang, H. Franze´n, S. Toksvig–Larsen, L. Lidgren. the performance of Charnley total hip prostheses. Does vacuum mixing of bone cement affect heat generation?Analyses of four cement brands, J. Appl. Biomater.6:105–108, 1995.
    K. A. Hing, S. M. Best, and W. Bonfield, Characterization of PorousHydroxyapatite, J. Mater. Sci. Mater. Med., 10 135–145, 1999.
    K. A. Hing, S. M. Best, K. E. Tanner, W. Bonfield, and P. A. Revell,‘‘Mediation of Bone Ingrowth in Porous Hydroxyapatite Bone Graft Substitutes,’’ J. Biomed. Mater. Res. A, 68 187–200, 2004.
    K. Hing, B. Annaz, S. Saeed, P. Revell, and B. T., Microporosity Enhances Bioactivity of Synthetic Bone Graft Substitutes, J. Mater. Sci. Mater. Med., 16 467–475, 2005.
    K.H. Rateitschak, H.F. Wolf. Color Atlas of Dental Medicine. Thieme Medical Publishers, 1995.
    Karin A. Hing, Bioceramic Bone Graft Substitutes: Influence of Porosity and Chemistry. Int. J. Appl. Ceram. Technol., 2 184–199, 2005
    L. Hench and H. Paschall, ‘‘Direct Chemical Bond of Bioactive Glass–Ceramic Materials to Bone and Muscle,’’ J. Biomed. Mater. Res., 7 25–42, 1973.
    L. L. Hench and J. Wilson, An Introduction to Bioceramics. World Scientific, Singapore, 1993.
    M. Bohner and F. Baumgart, ‘‘Theoretical Model to Determine the Effects of Geometrical Factors on the Resorption of Calcium Phosphate Bone Substitutes,’’ Biomaterials, 25 3569–3582, 2004.
    M.A. Asselmeier, R.B. Caspari, S. Bottenfield.Areviewof allograft processing and sterilization techniques and their role in transmission of the human immunodeficiency virus. Am J Sports Med. 21 170−175, 1993.
    M.S.Block, T.N.Kent, Guerra. Implants in dentistry. W.B. Saunders Company,1997
    N.B. Singh, B. Middendorf. Calcium sulphate hemihydrate hydration leading to gypsum crystallization. gypsum crystallization. Progress in Crystal Growth and Characterization of Materials, 53 57-77, 2007.
    O. Gauthier, J. M. Bouler, E. Aguado, P. Pilet, and G. Daculsi, ‘‘Macroporous Biphasic Calcium Phosphate Ceramics: Influence of Macropore Diameter and Macroporosity Percentage on Bone Ingrowth,’’ Biomaterials, 19 [1–3] 133–139, 1998.
    P. A. Rubin, J. K. Popham, J. R. Bilyk, and J. W. Shore, ‘‘Comparison of Fibrovascular Ingrowth Into Hydroxyapatite and Porous Polyethylene Orbital Implants,’’ Ophthal. Plast. Reconstr. Surg., 10 96–103, 1994.
    P. S. Eggli, W. Muller, and R. K. Schenk. Porous Hydroxyapatite and Tricalcium Phosphate Cylinders with Two Different Pore Size Ranges Implanted in the Cancellous Bone of Rabbits.
    R. E. Holmes. Bone Regeneration Within a Coralline Hydroxyapatite Implant. Plast. Reconstr. Surg., 63 626–633, 1979.
    R. Holmes, V. Mooney, R. Bucholz, and A. Tencer, A Coralline Hydroxyapatite Bone Graft Substitute. Preliminary Report. Clin. Orthop., 188 252–262, 1984.
    R. Moore William, E. Graves Stephen, GegoryiI. Bain. Synthetic Bone Graft Substitutes. ANZ J. Surg 71 354–361, 2001.
    S.F. Hulbert, J.C. Bokros, L.L. Hench, Wilson J, G. Heimke. T. Kokubo, Recent progress in glass-based materials for biomedical applications. The Centennial Memorial Issue of The Ceramic Society of Japan 99 965-973, 1991.
    S.F. Hulbert, L.L.Hench, D.Forbers, L.S. Bowman. History of bioceramics. Ceram Internat 8: 131-140, 1982.
    S.F. Hulbert, S.J. Morrison, and J. J. Klawitter. Tissue Reaction to Three Ceramics of Porous and Non-Porous Structures. J. Biomed. Mater. Res., 6 347–374, 1972.
    T. Kindt–Larsen, D. B. Smith, J. S. Jensen, Innovations in acrylic bone cement and application equipment, J. Appl. Biomater. 6 75–83, 1995.
    T. Kokubo, Recent progress in glass-based materials for biomedical applications. The Centennial Memorial Issue of The Ceramic Society of Japan 99: 965-973, 1991.
    T. P. Harrigan, J. A. Kareh, D. O. O’Connor, D. W. Burke, W. H. Harris, A finite element study of the initiation of failure of fixation in cemented femoral total hip components, J. Orthop. Res. 10 134–144; 1992.
    W. Dietmar Hutmacher, Scaffolds in tissue engineering bone and cartilage. Biomaterials 21 2529-2543, 2000.
    楊榮森, Edwards, 基本骨科學與創傷學, 合記圖書出版社, 43-47, 2001
    楊榮森,B. Salter, 骨骼肌肉系統疾病和創傷, 合記圖書出版社, 7-17, 2002.

    無法下載圖示 校內:2106-07-30公開
    校外:2106-07-30公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE